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Abstract

Well functioning Markets for Technology (MFT) allow inventors to sell their inven-
tions to others that may exploit them better. Indirectly, MFT also enhance welfare
by supporting a division of labor between upstream inventors and downstream com-
mercializers. In this paper we explore the relationship between science and MFT and
argue that inventions based in science should be more tradable. Science increases the
efficiency of inventive activity, and increases the value of the resulting inventions. In
addition, science reduces the transfer cost of knowledge. Conceptualizing inventions
in scientific terms improves communication between buyers and sellers, reduces search
costs for buyers, and enhances buyers’ ability to evaluate and integrate the invention.
Using large scale data, we establish a positive relationship between science and MFT.
We show that this relationship is stronger for novel inventions (inventions that are
more different from existing inventions), consistent with science reducing search and
integration costs. To isolate the effect of science on the demand for technology ac-
quisition, we exploit a quasi-natural experiment of the arrival of Soviet scientists to
American cities. Holding fixed invention quality, an increase in the ex-post scientific
understanding of an invention leads to a 22% higher likelihood that it is traded.
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1 Introduction

The past several decades have witnessed two distinct transformations in the innovation

ecosystem: the rise of a Market for Technology and an explosion in scientific research.

Data from the USPTO Patent Assignment Dataset (Graham et al., 2018) shows that patent

reassignments have risen ten-fold from around 2,000 to over 20,000 cases between 1980 and

2016. U.S. corporations have reported a steady increase in royalty receipts and payments

for industrial processes abroad, from $1.5 billion and $.4 billion respectively in 1987 to $12.8

billion and $4.5 billion in 2017.1 University licensing revenues have increased ten fold over

an even shorter period, from $218 million in 1991 to $2.5 billion in 2015 (AUTM, 2015).

A similar upward trend is observed in scientific research. In 2016, 32,246 “hard science”

doctorates were awarded in the United States, which is more than twice the number in

1986 (13,914) (Thurgood et al., 2006).2 Globally, the publication of peer-reviewed scientific

articles has grown at an accelerating rate, with annual growth rates of 1.8% in the 1980s

rising to around 4.01% in the 1990s and 3.99% in the 2000s.3 Moreover, the reliance of

invention on science has increased as well, as indicated by the rise in the share of patents

citing science from 4% to 28% of all U.S. utility patents between 1980 and 2015 (Marx, 2019).

In this paper, we relate these two phenomena to explore the effect of science on technology

trade.

A well-functioning Market for Technology (MFT) enhances welfare by allowing inventors

to sell or license inventions to those who can commercialize them more efficiently. However,

realizing these gains from trade must contend with technology transfer costs. These costs

include the direct cost of transferring knowledge, including relevant know-how, across firm

1Excludes receipts and payments from affiliates. Data for 2017 from BEA website
(https://apps.bea.gov/iTable/iTable.cfm?reqid=62step=9isuri=1&product=4); data for 1987 from the
scanned issues of the Survey of Current Business. 1921-2014. https://fraser.stlouisfed.org/title/46, accessed
on March 11, 2019.

2“Hard science” includes Science and Engineering, excluding Social Sciences, Education, Humanities and
Arts.

3On aggregate, 1.7 million articles were published in 2016, compared to just over 500 thousand in 1980.
(Authors’ calculations based on Clarivate Web of Science.)

1



boundaries. They also include the search costs that potential buyers and sellers incur, as well

as contracting costs and the potential inefficiencies arising from incomplete contracts. The

application of science to invention reduces these transfer costs and enhances the efficiency

of MFT.

Conceptualizing inventions in scientific terms enhances communication between buyers

and sellers, reduces search costs for buyers, and enhances buyers’ ability to evaluate and

integrate the invention. Science generalizes and abstracts phenomena into universal cate-

gories. This suggests that inventions based in science will be easier to search and understand

by potential buyers (Arora and Gambardella, 1994). Scientific understanding aims beyond

empirical relationships. Its objective is to uncover the mechanisms behind the phenomenon.

Buyers of scientific inventions know more precisely the constituent parts of an invention and

what modulates its behavior. This makes it easier to integrate such inventions into existing

technology platforms and predict better their optimal use.

The development of solid-state electronics demonstrates the effect of science on technol-

ogy buyers. When AT&T’s Walter Brattain and John Bardeen patented their point-contact

transistor in 1948, they also submitted a paper to the journal Physical Review formalizing

their discovery.4 William Shockley similarly followed up his junction transistor invention

by writing the definitive textbook for the subject: Electrons and Holes in Semiconductors

(Riordan and Hoddeson, 1997). The transistor was formulated in universal categories and

its mechanisms were understood in scientific terms. This partly accounts for the success

that AT&T had in licensing the technology to GE, IBM, Raytheon, Texas Instruments and

Tokyo Tsushin Kogyo (Sony) merely four years after the initial invention (Ebert, 2008).

The context-independence of knowledge of transistors also explains how major follow-on in-

novations could emerge from outside of AT&T. Jack Kilby at TI (Texas Instruments), for

instance, acquired his knowledge about transistors from a 1952 transistor seminar at Bell

Labs but still came up with a radically divergent solution to Bell when solving the problem

4This is in sharp contrast to Edison’s discovery of the Thermionic effect in 1883, which was not used in
signal manipulation until after Owen Richardson’s scientific formalization in 1901.
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of increasing circuit complexity — the Integrated Circuit. Even though Bell scientists were

the original inventors of the transistor, their idea for a follow-on development far less efficient

that the integrated circuit design proposed by Kilby (using Germanium) and, a little later,

Noyce (using silicon).5 This example also shows that the original inventor does not have a

monopoly on good follow-own development ideas; thus, a market for technology can create

gains from trade (Gertner, 2013).

In this paper, we investigate how science increases the rate of trade in technology by

increasing gains from trade and reducing the cost of transferring technology from seller to

buyer. We proceed in two steps. First, using large scale data on U.S. patents and scientific

publications between 1980 and 2016, we establish a positive relationship between science

and MFT. We measure the “science basedness” of inventions by whether a patent refers to a

scientific article (Marx, 2019). This dataset matches front page Non Patent Literature (NPL)

citations in a U.S. patent to peer-reviewed scientific publications from Microsoft Academic

Graph (MAG). We use patent reassignments from the USPTO Patent Assignment Database

(PAD) to measure transactions in MFT.

Our baseline finding is that a patent which cites a scientific publication has a 23%

higher probability of being traded compared to a patent that does not cite science. Since

citing science may be positively correlated with measures of invention quality, we control

for forward patent citations. We also confirm that this positive relationship between science

and trade hold for patents with high stock market value and those sharing prior art in the

U.S., European, and Japanese patent jurisdiction (triadic patents). Furthermore, consistent

with the view that science-based inventions should have lower search and integration costs,

we find that the science-MFT relationship is stronger for novel inventions, that is, inventions

that are more different from what is already known. Other things being equal, potential

buyers may find it harder to search for and integrate inventions that are less familiar. Thus,

transfer costs are more likely to hinder trade in novel patents and should be more responsive

5Bell Labs’ Jack Morton proposed single transistors that would perform many tasks, rather than Kilby’s
solution to produce many transistors in one chip.
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to science. Our estimates indicate that the effect of science on patent reassignment is around

four times larger for novel invention compared to those for “not novel” inventions.

Our second contribution is identifying the causal effect of science on MFT by exploiting

an exogenous source of variation. We ask how an ex-post increase in the scientific under-

standing of an invention changes the rate of trade, holding invention quality fixed. We

leverage the collapse of the Soviet Union, which spurred the migration of high-caliber scien-

tists into the United States, as a source of exogenous variation in the scientific understanding

of inventions. Soviet scientists may have interpreted and explained inventions that are close

to their subject matter expertise, reducing search and integration costs for potential buyers.

Importantly, this analysis allows us to control for many sources of unobserved differences

such as invention novelty and locus of invention (who performs upstream research), as these

are dropped in the difference-in-difference analysis. Our findings suggest that patents similar

to Soviet science experience a 22% increase in trade probabilities after Soviet scientist mi-

gration, compared to a control set of patents that are unrelated to Soviet science. Moreover,

this effect becomes 84% larger for patents that are novel, compared to those that are not

novel.

In summary, we offer a large-scale empirical investigation of the relationship between

science and MFT. Inventions based in science are more likely to be traded. In part, this is

because science lowers transfer costs in the market for technology. Science lowers search costs

for buyers, increases the ability of buyers to understand and use the invention, and reduces

contracting costs. Our findings imply that enhancing scientific understanding can increase

social welfare over and above the role of science in generating fundamental inventions, by

supporting a market for technology, which allocates ownership rights to the most efficient

user of existing inventions, and indirectly, by supporting a division of innovative labor.

The rest of the paper is organized as follows: Section 2 presents the theoretical argu-

ments; Section 3 describes the data and presents the non-parametric evidence; Section 4

includes the empirical analysis and Section 5 concludes.
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2 How science affects patent trade

A market for technology arises when the value of the invention to a buyer is greater than its

value to its original inventor (the potential seller). That is, an invention will be sold when

it can be better exploited by someone other than the inventor, and the cost of transferring

knowledge are lower than the gains from trade. Science reduces transfer costs and increases

gains from trade.6

2.1 Gains from trade and its determinants

The gains from trade for patent is equal to the value a buyer derives from a patent net of

the value the inventor (seller) derives from it. There are two primary components that alter

these gains.

The first is comparative advantage: buyers with more resources and capabilities to

commercialize the invention will increase gains from trade. For instance, a pharmaceutical

patent requires complementary experience in navigating FDA regulations and a salesforce

catering to physicians. Therefore, larger incumbents such as Eli Lilly would have derived

more value from the use of the Swanson-Boyer recombinant DNA patent than a nascent

biotechnology company such as Genentech. This explains the patent licensing arrangement

in which Lilly produced Humulin by licensing Genentech’s patent. It is also consistent

with “small business” patent assignees (defined by the USPTO as those with less than 500

employees) exhibiting higher rates of patent trade (Figueroa and Serrano, 2019). Therefore,

we predict that the size of the inventor (seller) is negatively correlated with patent trade.

If comparative advantage drives gains from trade, then it follows that markets with a

more diverse set of potential buyers are more likely to exhibit trade, compared to markets

with homogeneous buyers. Heterogeneity make it more likely, for a given market size, that

some potential buyer will have a higher valuation for the invention than the original inventor.

6Appendix A formally models these mechanisms.
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Hence, we predict that markets with more heterogeneous buyers will exhibit more patent

trades.

Inventions may need to be integrated into pre-existing production processes for suc-

cessful commercialization. Patents that embody unfamiliar technology are less likely to

appeal to potential buyers. Indeed, a wide literature on the diffusion of novel technologies

is inspired by the widespread empirical pattern that adoption is often slow due to lack of

complementary investments and poor modularity of novel inventions to existing technolog-

ical regimes (David, 1990; Bresnahan et al., 1996; Gross, 2018). Therefore, we predict that

novel inventions are, on average, less likely to be traded.

The second mechanism through which gains from trade is affected is via rent dissipation:

if buyers and sellers can guard against the erosion of their respective market power, gains

from trade will increase (Gans et al., 2002). For instance, if the potential buyer operates in a

different product market than the seller, then the transfer of a patent does not dissipate any

rents for both parties. However, gains from trade between competing firms would be lower,

as the transfer of an invention directly cannibalizes into a seller’s existing market power

(that is, the invention is worth more to the seller & therefore gains from trade are lower).

BP chemicals, for instance, licensed its acetic acid technologies only to markets where it had

no market access. However, the firm licensed aggressively in polyethylene, where it had a

very low market share, competing with Union Carbide for licensing revenues in this segment

(Arora and Fosfuri, 2000). We do not directly explore rent-dissipation, but do find some

evidence consistent with its existence in section 5.

2.2 Science and transfer costs

Gains from trade must contend with the existence of transfer costs before a patent trade can

occur. Transfer costs for an invention consist of integration costs, uncertain property rights,

and expropriation hazards. Science can increase the likelihood of trade by decreasing these

costs.
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2.2.1 Lowering integration costs

Science can affect buyers by lowering expected integration costs. An extensive literature

on technology adoption emphasizes the costs of integrating new technologies into existing

systems. Complementary investments are typically highlighted as critical for new technology

adoption in numerous cases, such as factory electrification (David, 1990) and client/server

computing (Bresnahan and Trajtenberg, 1995). Science breaks down an invention into its

prime components, hence making it more modular. Modular systems are “loosely coupled”

such that “a change in the design of one component [does not] require compensating design

changes in other components” (Sanchez and Mahoney, 1996). The scientific decomposition

of an invention into its distinct functional components should allow buyers to anticipate

better how each part will interact with existing components, hence lowering the costs of

integration.

The rise of fabless firms in the semiconductor industry illustrate this point. The modern

semiconductor industry, since its founding by Fairchild Semiconductors in 1957, had largely

internalized the design and manufacture of integrated circuits within a firm, providing little

room for division of labor between firms. This started to change with Application Specific

Integrated Circuit (ASIC) companies such as VLSI Technology and LSI Logic, which designed

circuits for systems companies trying to devise new chips for downstream applications (CD

players, computers etc.). The mid-1980s saw the advent of “fabless” companies such as

Xilinx and Chips and Technologies that only designed chips, and “foundry” companies such

as Taiwan Semiconductor Manufacturing Company (TSMC) that only manufactured them.

Most recently, the rise of IP licensing firms such as ARM that only license processor cell

libraries (without designing chips) have become prominent players, decomposing the value

chain even further.

This development of MFT in semiconductors has relied upon sustained increases in the

scientific understanding of the surface chemistry of semiconductors, which had been refined

throughout the development of the transistor in Bell Labs in the 1950s. Follow-on inventions
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of science-based tools further lowered transaction costs by letting buyers and sellers better

understand what technical component was being traded. For instance, the EDA industry,

which provided standardized CAD-like software for chip designers, facilitated communication

between designers and foundries.

2.2.2 Clarifying property rights

A fundamental problem of selling knowledge is that the bargaining process requires inevitably

disclosing the good itself (Arrow, 1962). Patents help, but do not fully solve the problem.

First, the seller needs to convince the potential buyer of the value of the invention, which

requires disclosing the invention to the buyer. A scientific decomposition of the information

allows for only the relevant parts to be disclosed, without giving away the “secret sauce”

(Anton and Yao, 1994). More to the point, patents often do not demarcate the scope of the

invention clearly and effectively. Fuzzy patents are not very useful in protecting the invention,

and even more so, if the invention has to be traded. Indeed, Arora and Fosfuri (2000) point

to the clear, explicit description of “formulae, reaction pathways and operating conditions”

represented via Markush structures as one of the reasons why chemical patents tend to work

better in protecting property rights (Levin et al., 1987). The semiconductor industry also

provides support for this effect. Before the entry of specialized EDA firms, companies such

as HP internalized chip designs in their in-house CAD groups, partly because sharing chip

layouts with foundries could disclose critical parts of their design. With the publication of

“Introduction of VLSI Systems” by Caltech’s Carver Mead and Xerox PARC’s Lynn Conway

in 1980, however, computer scientists began to write more standardized software (Nenni and

McLellan, 2013). This shifted the locus of problem-solving to the downstream client, and

thereby avoided the inadvertent transfer of “tacit,” “sticky” information important to the

firm (Von Hippel, 1994).

Conversely, the absence of a scientific clarification of property rights (who owns what,

how, and why) has led to intractable patent disputes in new technologies. For instance,
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the Wrights brothers initiated a patent war against Glenn Curtiss for his use of ailerons in

1908, merely five years after their first flight at Kittihawk. The difficulty of determining

infringement likely stemmed from the primitive state of the science of aerodynamics at the

time. The resulting stalemate was only ended when the the U.S. government forced a “patent

pool” solution during World War I (Merges and Nelson, 1990). Apple’s patent battles with

Microsoft over the use of the graphical user interface (GUI) in 1988 also started five years

after the introduction of its Lisa computer (Hiltzik, 1999). Xerox then joined the fray as it

sued Apple in 1989 over copying its GUI research in the Alto computer from the Palo Alto

Research Center (PARC). The protracted legal battles regarding design patents surrounding

the smartphone between Apple and Samsung, also attest to the difficulty of adjudicating

infringement when a new technology is not understood scientifically. In other words, science

clarifies the scope of the invention, leading to “crisp” patent boundaries, thereby reducing

contracting costs for the invention.

2.2.3 Reducing share of tacit knowledge

Knowledge relevant for exploiting an invention is valuable to buyers but often costly to trans-

fer (Von Hippel, 1994). The cost of transferring such complementary knowledge depends on

whether the knowledge can be usefully codified in general categories, or, whether the knowl-

edge is context dependent and difficult to articulate. Context dependent knowledge is often

empirically derived, based on experience, and has a large tacit component (Von Hippel,

1994; Polanyi, 2015; Kogut and Zander, 1992; Arora, 1995). Contracts on tacit knowledge

are more likely to be incomplete, as the transfer of tacit knowledge requires the active coop-

eration of the seller, but such cooperation is best induced through longer term relationships

rather than arms-length contracts (Arora, 1995). Incomplete contracts increase the risk of

hold-up and bargaining breakdowns (Galasso and Schankerman, 2014; Merges and Nelson,

1990). As noted, a scientific understanding of inventions also implies that the complemen-

tary knowledge is easier to codify, cheaper to transfer, and less vulnerable to contracting
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failures.

A classic example of the importance of tacit knowledge for trade is the repeated failure

by American industrialists to replicate cellulosic fiber production based on the Bevan, Cross

and Topham Patents from Great Britain in the early 1900s (Hounshell, 1988, p.5). Inspired

by Counte de Chardonnet’s success in generating “artificial silk” from wood pulp in the 1850s,

Britain’s Charles Cross and Edward Bevan succeeded in refining the product by inventing the

viscose process. Rayon production grew from 2 million pounds in 1900 to 15 million pounds

in 1910. However, even after buying the American rights to these viscose patents, firms

such as the Cellulose Products Company and the General Artificial Silk Company failed to

replicate the European processes and were dissolved in the first decade of the 1900s. It was

only after the British manufacturer Courtaulds had made a Foreign Direct Investment in the

American Viscose Company, and American producers having observed each manufacturing

process and importing the machinery, that domestic cellulosic fiber production could begin

in earnest. Science can reduce such information loss by increasing the share of explicitly

codified knowledge and reducing the share of uncodifiable tacit knowledge. Advances in

polymer chemistry, for instance, made it possible for Du Pont to source polyethylene and

polyester, in stark contrast to its difficulty with replicating celullosic fibers (Mueller, 1962).

2.3 Science and the gains from trade

In addition to reducing transfer costs, science can also affect gains from trade. We hypoth-

esized that inventors with less commercialization capability are more likely to sell, since the

value of an invention is lower to them than it is to larger incumbents with complementary as-

sets. However, potential buyers may harbor doubts about the value of an invention, because

patent documents need not disclose all the tacit knowledge required to realize the claims of

the patent. These doubts may be exacerbated for smaller firms, universities, and individ-

ual inventors, who do not have the downstream assets to prove otherwise. Reliability may

therefore explain why research papers by corporations, for instance, tend to be cited more
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often in patents than those by universities on the same discoveries (Bikard, 2018). Scientific

results, however, may bolster the reliability of an invention, and further increase likelihood

of sale for small sellers.

Science may increase the potential uses of an invention, making it more attractive to

cooperate with other producers (by selling technology) rather than competing with them

(by commercializing products). The evolution of Light Emitting Diode (LED) technology

illustrates this point. Semiconductors that emit light were discovered as early as 1907,

when Henry Round, a British radio engineer, observed a light yellow light emitting from his

silicon carbide-based detector. However, the mechanisms behind this observation required

a better understanding of quantum theory before the phenomenon could be applied more

broadly. Therefore, early LED inventions were done in vertically integrated firms such as TI

(infrared LED in 1961) and GE (red LED in the same year) (Sethi, 2013; Stevenson, 2009).

However, new uses were discovered for LEDs beyond indicator lights to general lighting (made

possible after Shunji Nakamura’s discovery of blue LEDs) and screen displays (diffused after

the adoption of Organic LEDs in mobile phones). This enabled specialized firms such as

Universal Display Corporation (UDC) to avoid entering the downstream market and sell

their intellectual property on dopants to incumbents.7

Science can also increase gains from trade by clarifying and generalizing the underlying

mechanisms of a novel or obscure invention. This will enable the patent to be relevant

to a wider set of buyers. The Bessemer process, for instance, diffused rapidly after its

metallurgical properties were sufficiently understood. In a similar vein, connecting more

“distant” buyers and sellers to match with each other reduces rent dissipation, thereby

increasing gains from trade.

7See for instance UDC and BASF’s patent deal in IMSExpert. “$96M in OLED Patents, “Fruit-
ful” Purchase for 2017”. National Law Review. August 12, 2016 Friday. https://advance-lexis-
com.proxy.lib.duke.edu/api/document?collection=newsid=urn:contentItem:5KFJ-DRC1-F03R-N0XF-
00000-00context=1516831.
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2.4 Science and the entry into invention

So far, we have discussed the determinants of patent trade. However, it is also possible

that higher prospects of trade also raise the incentives to invest in science and enter into

invention for potential inventors. Prior works have shown that a broader MFT leads to

more upstream research (Bresnahan and Gambardella, 1998). This is because a downstream

industry with a large number of distinct buyers can encourage entry of upstream specialists,

such as technology suppliers, who can spread their fixed cost investments over a larger

number of buyers. The petrochemical sector offers evidence to support this dynamic. For

instance, the U.S. petroleum industry was fragmented, with many municipalities operating

their own refineries. Moreover, oil from different fields had varying amounts of impurities.

This created an opening for firms such as UOP, which developed and offered the Dubbs

process to refine gasoline to independent refiners. The demand from independent refiners

led UOP to develop also the Udex process to separate aromatic compounds from virtually any

kind of hydrocarbon feedstock (Gambardella, 2002). Arora et al. (2009) test this proposition

in the global chemical industry in the 1980s and 1990s. They find that an increase in the

number of downstream chemical firms (buyers of chemical plants) increases the number of

upstream Specialized Engineering Firms (SEFs) that provide plant design services.

In sum, while science increases gains from trade, the expansion of MFT itself can also

increase science-based invention, which will further strengthen MFT and reinforce this dy-

namic (Young, 1928). Therefore, we present an empirical identification strategy holding

fixed the dynamic effect of MFT on the supply of tradeable inventions, as well other sources

of inter-patent heterogeneity.

3 Data

We combine data on patents and peer-reviewed scientific publications to examine the rela-

tionship between science and technology markets. Our patent data is from the 2016 publica-
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tion of PatStat and encompasses around 5.2 million utility patents granted by the USPTO

from 1980 to 2016. We collect information on patent reassignment (transaction date, identity

of buyers and sellers) by linking them to the USPTO Patent Assignment Database (PAD)

(Graham et al., 2018), which records details on the transfer of ownership between patent

assignees. To account for sample truncation, we limit our sample to patents granted on or

before 2011 (for which we observe reassignments until 2015).8 We also construct combine

measures of invention novelty adopted from previous research (Fleming, 2001). The final

sample consists of about 3.9 million patents, of which 6.3% are reassigned at least once. We

describe next the main steps taken to construct the sample and main variables.

[ TABLE 1 ABOUT HERE ]

3.1 Science-based inventions: Patent citations to scientific publi-

cations

We define science-based inventions as those that make at least one citation to a scientific

article (Narin et al., 1997; Arora et al., 2017; Roach and Cohen, 2013; Sampat, 2010). NPL ci-

tations often contain material unrelated to “science” ranging anything from foreign patents,

magazine articles, computer code, to trade publications. Therefore, simply counting the

number of NPL entries for each patent would fail to accurately capture the use of science by

an inventor in a patent. We employ a publicly available dataset from Marx (2019), which

matches NPL citations to scientific articles available in Microsoft Academic Graph (MAG).

The dataset assigns confidence scores for matches between a patent’s NPL citation and a

MAG article (1 being the lowest and 10 being the highest). We take the “PCS (Patent Cita-

tions to Science)” file and exclude matches with under a confidence score of 9. We identify

723,351 patents that cite a scientific article in MAG at least once between 1980 and 2011.

8About 58% of patents that are reassigned are done so within five years of being granted.
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3.2 Invention quality and patent value: Triadic patents and stock

market value

A major concern with identifying the effect of science on patent trades is that citations

to science are confounded by higher quality of the underlying invention and of the patent

protecting it. Citation to science may indicate that the inventor has been professionally

trained, is knowledgeable, and has searched thoroughly through the scientific literature to

disclose the NPL citation as prior art.9 We use three methods to measure the quality of a

patent and the underlying invention. We also exploit a quasi-natural experiment in section

5 to fix patent characteristics and vary the supply of science for patents.

First, we use data from Patstat to count the the number of forward patent citations a

patent has received and normalize this by the average number of citations received by all

patents in the focal patent’s publication year. Since prior art citations are used to delineate

the novelty of a patent, it is frequently used as one measure of patent quality. Second, we

source the list of “triadic patents” from the OECD, which defines them as patents that share

at least one prior art across the three large patent jurisdictions - the European, Japanese, and

U.S. patent offices (Dernis and Khan, 2004). That the same invention is patented in all three

jurisdictions implies that the value to the inventor is high. Third, we use the stock market

valuation of patents from Kogan et al. (2017) for firms listed in American stock exchanges.

The authors estimate the dollar value of patents based on excess stock returns for U.S. public

firms on the date of the patent’s issuance date recorded in the USPTO official gazette. Since

price fluctuations are specific to the firm’s baseline market value, we normalize them by the

market capitalization of the focal firm and then classify patents with below-average stock

market returns as low value and vice versa.

9Of the 723,351 patents that cite at least one scientific article between 1980 and 2011, there are 264,250
(37%) patents whose citations to science are added exclusively by applicants. On the other hand there are
around 84,066 (12%) patents whose citations to science are added exclusively by patent examiners.
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3.3 Market for Technology: Patent reassignments

We measure MFT by the patent reassignments in the USPTO Patent Assignment Dataset

(PAD) from 1980 to 2015 for patents granted on or before 2011 (Marco et al., 2015).10

The USPTO records transfers of ownership that occur between patent assignees. While

the reporting of transfers is voluntary, it takes precedence as proof of ownership in cases

of legal dispute. Therefore, the assignees that acquire patents have an incentive to report

transfers. Since the reassignments can happen for reasons unrelated to MFT, we build on

Serrano (2010). We first leverage the cleaning that Marco et al. (2015) has performed and

select only transfers marked as “assignment of assignors” by the USPTO, excluding mergers,

security interests, name changes, and record corrections. We exclude assignments from an

inventor based on a number of string distance measures, comparing inventor name to assignor

(seller) name.11 and whose assignment dates coincide with the patent issue date, since these

indicate that the assignment is an initial assignment. For the same reason, we exclude

assignments where the disambiguated “initial” assignee name from USPTO PATSVIEW

is similar to the buyer (assignee) name on PAD. We furthermore follow the updated data

cleaning procedure in Figueroa and Serrano (2019) which leverage Thomson SDC Platinum

data to censor patent assignments between M&A target and acquiror companies between

1980 and 2015. Assignments occur frequently between business units within the same firm

or between subsidiaries of multi-firm conglomerates. For our purposes, these assignments are

not transactions between two independent entities. Therefore, we censor out assignments

between similar-named entities, such that assignments between “Microsoft Corporation” and

“Microsoft Ventures” are not classified as MFT transactions. Finally, we censor assignments

transferring more than 25 patents at a time, which are likely to be M&A transactions. These

10For simplicity, we consider patent trades in this paper, which, unlike licensing, entail an exclusive
transfer of property rights, such that the original inventor cannot generate revenue from the invention after
selling.

11We use jaro-winkler, jaccard, and a modified levehnstein distance. The last distance metric, available
from python’s fuzzywuzzy module, handles arbitrary changes in first-last name orderings (i.e. “Jane Doe”
vs “Doe, Jane” name combinations will not incur a distance penalty.)
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procedures yield a total of 243,977 patents with at least one (re)assignemnt that we classify

as an MFT transaction.

3.4 Novelty

We measure patent novelty using the technology combination familiarity measure from Flem-

ing (2001). We count the number of times the same sub-class combination had appeared

before the patent publication date. The assumption is that combinations of sub-classes that

appear more often should be more familiar to buyers and sellers of patents. In our sample,

the combination familiarity score ranges from 0 (first combination of its kind) to 174 (ap-

peared 174 times before) with a mean of 76.8. As this variable is highly skewed (14.435), we

take the natural logarithm of this measure in the regressions below.

3.5 Size of inventor

We hypothesized that the probability of trade is decreasing in the commercialization ca-

pability of an inventor. We measure this first by the declared size of patent assignees in

USPTO maintenance fee payment records. Firms with less than 500 employees are classified

as small entities per section 41 of the U.S. patent act, and benefit from a 50% reduction in

filing and maintenance fees. Therefore, based on the payment date of the maintenance fee,

it is possible to identify whether a patent was owned by a small or large patentee at the time

of a sale. Second, we match the initial patent assignee names to public company names in

Compustat. The fuzzy-matching process takes into account misspellings, name variations

and acronyms (e.g. INTERNATL BUSINESS MACH CORP is matched to IBM) for 4,000

U.S. headquartered Compustat firms with positive R&D spending between 1980 and 2015.

The matching procedure also covers subsidiaries that we identify by ownership data from

BvD Orbis from 2002-2015 and M&A records in SDC platinum for years before 2002. Full

detail on the matching process can be found in Arora et al. (2017).
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3.6 Market characteristics: Buyer heterogeneity

We measure buyer heterogeneity as the top four-assignee concentration ratio by patent class-

years. The higher the share of patents assigned to the top four buyers, the more unequal

the distribution of valuations of inventions. We first extract the assignee names that are

disambiguated in the HBS inventor dataset. We then calculate a four-assignee concentration

ratio by dividing the patent stock of the four most frequent assignees by the patent stock of

all assignees in a 4-digit IPC-year. By constructing this measure, we implicitly assume that

the assignees approximate the potential buyers in a technology market, and that 4-digit IPC

classes are appropriate delineators of technology markets.

3.7 Market characteristics: Seller characteristics

We proxy the capability of the marginal seller by the average size of patent holders and the

total number of unique sellers. If the marginal seller’s capability is lower, average size of

patent holders would be lower, while there would be more sellers of patents. Average size

of patent holders is defined as patents granted to “small” assignees based on application

and maintenance fee payment divided by patent stock in each patent 4-digit IPC-year. To

identify the number of unique sellers, we cluster similar assignee names by using the string

distance measures used in section 3.3. Assignee name pairs that are sufficiently similar to

each other are then treated as a single name. This prevents misspellings or differences in

legal nomenclature (Corp, Inc, Ltd etc.) from classifying a single assignee into two different

entities. To a limited extent, this strategy also allows us to identify and unify technology

licensing arms or divisions of companies, provided the name of the company is long enough.
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4 Correlational Evidence

4.1 Science and the gains from patent trade

[ FIGURE 1 ABOUT HERE ]

Figure 1 presents the key relationships in the raw data. It contrasts the reassignment proba-

bility of patents that use (cite) science and those that do not, splitting the sample by novelty,

size (maintenance fee payment & Compustat ownership), and buyer value heterogeneity. Our

results are summarized in this plot: First, science-based patents are more likely to be traded

than non-science based patents (with the exception of Compustat patents). Second, the gain

in reassignment probability from using science is stronger for patents that are novel, belong

to smaller entities & non-Compustat firms, and are in markets with heterogeneous buyers.

The reassignment share gap between science-using and non-using patents is 1.6% for

novel patents, and 0.9% for not novel ones. The same gap for small entity patents is 3.6%,

while only 1% for large entity patents. Non-C4 patents in IPCs with high C4 ratios show

a 1.4% gain in reassignment probability when using science, while those in low-C4 IPCs

barely show any difference (.1%) between science-using and non-using patents. We proceed

to present econometric evidence examining the relationship between cites to science and

trade. We first estimate patent-level specifications:

Pr(Reassignmenti = 1) =β0Cite Sciencei + β1Cite Sciencei × Familiarityi

+ β2Familiarityi + γZ ′i + τt + ηc + εi

(1)

Specification (1) tests our prediction that novel (unfamiliar, obscure) patents are less

likely to be reassigned, and that science mitigates this effect. Reassignment receives a value

of one for patents that are reassigned at least once during their term and zero for patents

that are never reassigned within our time window.12 Cite Science is a dummy variable that

12A patent that is reassigned multiple times gets the same Reassignment value of one as a patent that

18



receives the value of one for patents with at least one NPL citation to Microsoft Academic.

Familiarity is measured by patent subclass combination familiarity (Fleming, 2001). We

expect β̂1 < 0 and β̂2 > 0.

Pr(Reassignmenti = 1) =β0Cite Sciencei + β1Cite Sciencei × Seller Sizei

+ β2Seller Sizei + γZ ′i + τt + ηc + εi

(2)

Specification (2) tests our prediction that higher seller commercialization capability

leads to less trade. Seller commercialization capability is measured by whether the patent is

owned by a “small” firm defined by the USPTO, and by whether it is owned by a Compustat

company. We expect β̂1 < 0 and β̂2 < 0 That is, we expect that large inventors are less likely

to sell their invention than smaller inventors, but that the use of science reduces the gap by

reducing transfer costs. As well, the increase in gains from trade may be more relevant for

bigger inventors.

Pr(Reassignmenti = 1) =C4i × {β0Cite Sciencei

+ β1Cite Sciencei ×Buyer Concentrationi

+ β2Buyer Concentrationi}

+ {β4Cite Sciencei

+ β5Cite Sciencei ×Buyer Concentrationi

+ β6Buyer Concentrationi}

+ γZ ′i + τt + ηc + εi

(3)

Specification (3) tests the prediction that markets with more heterogeneous buyers will

see more trade. We measure buyer concentration by the share of C4 patentee-owned patents

in a focal patent’s 4-digit IPC. C4i = 1 for patents owned by C4 patentees. Because C4

has been reassigned once.
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patentees are likely to be large entities, simply regressing reassignment against the share of C4

patentees will measure the effects of patentee size rather than buyer heterogeneity. Therefore,

we measure the effect of the C4 patentee share separately for patents belonging to C4 and

non-C4 patentees. Our coefficient of interest is β̂6, which we expect to be positive since it

measures the effect of buyer concentration (or inequality) on trade for non-C4 patentees.

Furthermore, we expect β̂5 > 0, since science moderates this effect.

We hypothesize that science reduces transfer costs, and therefore expect β̂0 > 0 for

specifications (1) and (2) and β̂4 > 0 for (3). Since patent quality may also affect reassign-

ments, we control for forward patent citations in all three specifications.13 τt and ηc denote

year and 4-digit IPC dummies, respectively. εi is an iid error term.

Table 2 presents the Linear Probability Model (LPM) estimates. As expected, the

coefficient estimate for Cite Science are positive and significant (ranging between ranges

between 11 to 16% in magnitude relative to the sample mean, depending on the controls),

consistent with the prediction that science reduces transaction costs and thereby increases

the probability of trade. Without any controls (but with patent grant year and 4-digit IPC

fixed effects), citing science is associated with a 23% increase in reassignment probability.14

Columns 1 and 2 test the effect of patent familiarity on reassignment. As expected,

the coefficient β̂1 < 0 and β̂2 > 0 and statistically significant. Patents whose subclass com-

binations are in the first decile of Combination Familiarity scores (in other words, novel

patents) are 1% less likely to be traded compared to those in the tenth decile (not novel

patents). However, novel patents that are based in science are 22% more likely to be traded

than novel patents not based in science, whereas the same difference for not novel patents

is 6%: the effect of science on reassignment is close to four times larger in novel patents.

Columns 3 through 6 test the effect of seller (inventor) size on reassignment. Patents be-

longing to “small” firms with under 500 employees are around 6% more likely to be sold

13Number of forward patent citations normalized by the number of citations received by all patents in
the focal patent’s publication year

14Unless stated otherwise, the percentage magnitudes reported here are all relative to the sample mean
in each specification.
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than those owned by “large” firms (column 3). On the other hand, small firm patents that

use science are 43% more likely to be sold, compared to small firm patents not based in

science (column 4). Patents owned by non-Compustat owners are 25% more likely to be sold

relative to Compustat patents (column 5), while those using science are 40% more likely

to be sold, compared to non-Compustat patents not based in science (column 6). Buyer

concentration results in column 7 show that more concentrated patent markets (those with

higher C4 patentee shares) have higher reassignment rates. For non-C4 patentees, being in

a concentrated market where 90% of all patentees are C4 patentees leads to a 2% gain in

reassignment probability compared to one where only 10% of all patentees are C4 patentees.

However, patents that use science in those concentrated markets are 16% more likely to be

traded than those that do not use science (column 8).

[ TABLE 2 ABOUT HERE ]

4.2 Science, MFT, and entry into invention

Consistent with science indirectly increasing the entry into invention by increasing the prob-

ability of trade, we expect the commercialization capability of the marginal seller (inventor)

to decrease as the use of science in an IPC-year increases. We proxy the commercialization

capability of the marginal seller by (i) the share of small sellers and (ii) the number of sellers

in a patent market. We test the following specification for 4 digit IPC c at year t:

yct =β0 + β1
No. of Science Citing Patentsct

Patent Stockct
+ γZ ′ + ηc + τt + εct (4)

where yct is (i) the share of patents issued to “small” entities by their payment of maintenance

fees and (ii) the number of unique sellers from the USPTO (identified through the cleaning

procedure in section 3.7). We control for higher technological opportunity by average forward

citations because technological advances may encourage the entry of new sellers. We also

include IPC (ηc) and year(τt) fixed effects to exclude the effect of any year or technology
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class-specific differences. εc,t is the iid error term. We expect β̂1 > 0.

[ TABLE 3 ABOUT HERE ]

Table 3 presents the estimation results. As expected, β̂1 > 0. We find that IPC-years

that have a higher share of patents citing science tend to have larger number of patentees

(sellers), while the average sizes of patentees are smaller. Our results indicate that a one

standard deviation increase in science-citing patent share from the sample mean translates

to a 15% gain in the share of small entities (from 28% to 32%). A similar gain is observed

for number of sellers: there are 0.068 sellers per patent on average, but IPC-years that cite

science a standard deviation more often have 0.078 sellers per patent.

4.3 Science and patent quality

A major threat to the validity of our correlational results is that patents that cite science may

systematically differ from non-citing patents. In particular, they may represent higher quality

inventions and better crafted patents. Therefore, in addition to controlling for forward patent

citations, we split the samples by whether they are evaluated as valuable or not by the stock

market, and by whether the assignee has filed a patent for the same invention in three

distinct patent jurisdictions (U.S., Europe, and Japan). If the effect of science on patent

trade is only measuring the effect of quality differences, then we expect the coefficient for

Cite Science to be statistically insignificant and weaker for columns 2 and 4 in table 4 (the

dependent variable is patent reassignment, as before), which only include patents above

average stock market value and triadic patents respectively. We find the opposite: the

relationship between science and reassignment for patents with high stock market value and

triadic patents is statistically significant and 1.5 to 2.5 times larger in magnitude compared to

those with lower stock market value and non-triadic patents. In the next section, we exploit

a quasi-natural experiment to fix invention and seller characteristics and exogenously vary

the supply of science. This will help us control for unobserved heterogeneity.
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[ TABLE 4 ABOUT HERE ]

5 Towards identifying the causal effect of science on

MFT

Our results that science-based inventions have higher rates of trade, especially for novel

inventions, smaller inventors, and heterogeneous markets, is consistent with the view that

science lowers knowledge transfer costs and increases gains from trade. Yet, other mech-

anisms can generate the positive science-MFT relationship. For example, if science-citing

inventions, especially novel ones, are more likely to be produced by specialized institutions

that lack commercial capabilities, we would find that the science-citing patents are more

likely to be traded. To identify a causla effect of science on patent trade, thus, our analysis

has to control for potential unobserved differences in inventions (or inventors) as the use of

science varies. In this section, we show that trade rates rise when a scientific understanding

of a patent improves ex post invention, with the arrival of Soviet scientists in the United

States.

5.1 Soviet scientist migration after the Cold War

We employ a shock to the scientific understanding of inventions in the United States em-

anating from the collapse of the Soviet Union, which resulted in a significant immigration

of scientists from the erstwhile Soviet Union to the United States. We hypothesize that the

arrival of Soviet scientists improved the ability of potential buyers to find, evaluate, and use

inventions related to Soviet science, and perhaps also reduced transfer costs.

Throughout the Cold War, the Soviet Union invested heavily in basic science. Soviet

scientists won several Nobel prizes (four in physics, two in chemistry), beat the United States

to the first satellite and manned spaceflight, and arrived at basic scientific inventions such

as the laser (Phokhorov) independently from Western science. However, knowledge of these
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results were only incompletely communicated to the West during the Cold War. Soviet sci-

entific publications were written primarily in Russian.15 While translations of prominent

mathematics and physics journals had become more common by the 1980s due to large scale

translation efforts by the National Science Foundation, the translation process itself would

delay the dissemination of knowledge from between six months to a year, and the price of the

translated journals was up to to twenty-eight times the price of their Russian language origi-

nals. Moreover, cover-to-cover journal translations would not be always available, depending

on the discipline (Hollings, 2016; Garfield, 2006). With the fall of the Soviet Union, state

funding for basic scientific institutions in the erstwhile Soviet Union were reduced, and the

ensuing economic crisis in the mid 1990s made employment in Russia even more precarious

(Mirzabekov, 1993). Coupled with changes in U.S. immigration policy facilitating the relo-

cation of Soviet scientists such as the Soviet Scientist Immigration Act of 1992, conditions in

former Soviet republics shortly after the Cold War increased the number of Soviet scientists

immigrating into the United States (Ganguli, 2015; Borjas and Doran, 2012).

5.1.1 Identification Strategy

The timing and location choice of immigrating scientists differentially affects the state of

scientific understanding in a region in the United States. If there are inventions in this

region that are similar to the subject matter that Soviet scientists have worked on, then

they will be better described by those scientists after immigration. A better translation of

an existing invention, in turn, will make it more tradable. On the other hand, inventions

in the same region that are unrelated to Soviet science will be unaffected by the arrival of

Soviet scientists.

Treatment (“Soviet“) and Control (“non-Soviet“) Patents — To determine

which patent is close to Soviet science, we calculate the cosine similarity of patent-to-Soviet

publication pair using a customized Term Frequency-Inverse Document Frequency (TF-IDF)

15Publications funded by the Soviet Academy of Sciences were required to publish in the language.
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metric for each word in both documents. Given these pairwise closeness scores, we can

classify a patent as “Soviet” or “Non-Soviet” based on how often the patent is ranked close to

publications in Soviet journals.16 We first identify 642,477 publications from 102 prominent

Soviet journals listed in the International Science Foundation’s (ISF) Individual Emergency

Grant program. The ISF was established by George Soros in 1992 with an initial funding of

$100 million with the purpose of preventing the collapse of Soviet science. Its grant programs

provided financing for leading basic scientists in the former USSR, as far as they could show

a proven publication record on prominent Soviet and Russian journals (Ganguli, 2017).

We match this list of journals in the Web of Science dataset and extract information

on the title and abstracts of these papers.17 For each publication, we calculate its distance

to all U.S. patents. We then check whether a focal patent is listed in the top 100 closest

patents for each publication. We add the number of times the patent has been matched

within the top 100 closest set to a Soviet publication and normalize this count measure by

the number of times a focal patent has been matched within the top 100 closest patent set

to each publication in the Web of Science (regardless of whether they are Soviet publications

or not). This normalization mitigates concerns that our measures are confounded by the

patent being closer to science in general:18

Identifying Assumptions — We assume that whether or not an invention is close

to Soviet science before the arrival of Soviet science is unrelated to factors affecting its

potential rate of trade. Treatment is triggered when Soviet scientists arrive in a region.

The outcome of interest is the reassignment probability of treatment and control patents

in the affected region. If Soviet science helps with reducing search and integration costs

for the “Soviet-similar” (treatment group) patents, then these patents should experience an

increase in reassignment frequency post-migration relative to the control patents (patents

that are unrelated to Soviet publications in the same MSA-IPC-year as the treatment patent).

16Appendix C provides a detailed explanation of the textual algorithm we used in the analysis.
17Appendix C.2 includes the names of the Soviet journals and number of articles in each journal to which

we match our patent sample.
18For a detailed explanation on the calculation method, see appendix C below.
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Furthermore, if we assume treatment group assignment is not dependent upon the timing of

scientist migration, then changes in trade rates post-migration should be driven by changes

in the value potential buyers attribute to these inventions.19

It is important to emphasize that our empirical investigation holds invention character-

istics fixed and examines the change in reassignment probabilities after the arrival of Soviet

scientists. This directly addresses the concern that the baseline results we found in section 4

were driven by patent quality, since the change in reassignment probability in this experiment

can only be caused by ex-post differences in scientific understanding, whereas the underlying

invention remains unchanged over time. We are agnostic, however, on whether this effect

impinges on knowledge transfer costs or gains from trade, as evidence below suggests that

both may be occurring.

5.2 Difference-in-Difference estimation for Soviet shock

We estimate a diff-in-diff model for patent i in year t:

Pr(Reassignmentit = 1) =β1Sovieti × Post Migrationt + β2Post Migrationt

+ θi + τt + εit

(5)

Reassignment receives the value of one on the year the patent has been reassigned (the

earliest reassignment date is used for multiple patent reassignments) and zero before this

date. Patents that are never reassigned will have zero Reassignment values throughout

their term (or until 2011, whichever is earlier), while patents reassigned will have zero values

until the year before they are reassigned. Soviet receives the value of one if the patent

document’s subject matter is semantically similar to those encountered in the texts of soviet

19We find very few citations from U.S. patents before 1992 to the Soviet publications in the ISF list,
suggesting that Soviet science is unlikely to have influenced the inventions themselves.
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scientific publications and zero if it is not similar.

Sovietness Normalizedi =
No. of times matched top100 to soviet articles

No. of times matched top100 to ALL(any) articles
(6)

If a patent has a Sovietness Normalizedi score of above 0.5, it is classified as a Soviet

(treatment) patent. Otherwise, it is classified as a non-Soviet (control) patent.20 In our

sample, around 10% of all patents are classified as treatment patents.21 For each treatment

patent, we select a control patent by matching on the treatment patent’s 4-digit IPC, MSA

(Metropolitan Statistical Area), publication year, science citation, and normalized forward

patent citations. This mitigates concerns that β̂1 is biased by certain technology classes or

regions being inherently closer to Soviet science.

Post Migration is a dummy variable indicating whether a Soviet scientist migrant has

arrived in the patent’s MSA before a focal year. After migration, the treatment group

patents in that MSA are then “treated,” while the control group patents remain unaffected.

We source immigration data for Soviet scientists from Ganguli (2015), which identifies 809

soviet scientist migrants in 179 MSAs from 1986 to 2002 by tracking the publication records

of scientists published in prominent Soviet journals listed by the International Science Foun-

dation (ISF). Migration is recorded if an author for a Soviet journal article whose publication

address before 1992 is recorded inside the Soviet Union subsequently publishes under an ad-

dress within the United States. We include patent fixed effects (θi) to fix inventor and

invention characteristics. We also include year (τt) fixed effects to preclude differences in

patent values due to fluctuating market conditions over time. εi,t is the iid error term.

Our coefficient of interest is β1, which is the differential change in reassignment proba-

bilities for patents close to Soviet publications compared to the change for the control patents

far from Soviet publications (Average Treatment Effect on Treated). If Soviet scientists re-

20We perform robustness checks using alternative similarity score cutoffs (e.g. by defining treatment for
patents in the top decile), but the results are not sensitive to these changes.

21This measures a dimension of the use of science in patents distinct from citations-based measures,
because it measures how frequently the same, rare concept has been used between inventions and scientific
publications.

27



duce transaction costs or increase gains from trade with “Soviet-science”, we should expect

β̂1 > 0. We find in column 1 of table 5 that β̂1 is positive and statistically significant.

Treatment patents that are similar to Soviet science experience a 22% larger increase in

reassignment probability (relative to the sample mean) after the arrival of Soviet scientists,

compared to a control patents.

[ TABLE 5 ABOUT HERE ]

The trade advantage conferred by better scientific understanding should be larger for

more novel patents. We therefore expect the effect on patent trade that we have isolated

through the arrival of Soviet scientists to be greater for novel patents. In columns 2 and 3,

we split our sample of Soviet and non-Soviet patents by the combination familiarity scores

described in section 4 (“Novel” columns refer to patents above the median familiarity scores,

while “Not Novel” columns include samples in the below median familiarity scores.). Column

2 and 3 show that the effect of Soviet science on patent reassignment is around 84% larger

for novel patents, compared to those that are not.

Columns 4 through 7 split the sample by our two measures of size (maintenance fee,

and Compustat ownership status) and finds results opposite to section 4.1. For instance, the

difference-in-difference coefficient estimate for “Not Small” and “Compustat” patents are

larger than those for “Small” and “Non-Compustat” patents. This implies that the arrival

of Soviet scientists affects not only the reduction of transaction costs, but also the reduction

of rent dissipation for incumbents. If the Soviet scientists allow firms to explore more distant

buyers (i.e., potential buyers that do not compete with the firm in the product market), then

incumbents with existing market power would benefit more from the reduction in rent dissi-

pation than smaller firms with no market power. Indeed, the results for buyer heterogeneity

suggests that Soviet scientists also increase gains from trade, separately from the reduction

of transaction costs: patents that belonged to more concentrated patent markets (column

9) tend to have a strong improvement in reassignment rates post-Soviet migration, whereas

those in patent markets with relatively equal buyers (column 8) do not show similar effects.
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It is therefore possible that Soviet scientists increased the value of patents to potential buyers

by elucidating the science underlying an existing invention.

The validity of our results depends on our treatment group assignment being unbiased in

terms of other patent characteristics. For instance, if patents similar to Soviet scientific arti-

cles were systematically of higher quality, we may expect them to be traded more frequently

than patents of lower quality. However, the two panels in of appendix tables E1 and E2

show that patents in the treatment group (similar to Soviet publications) have slightly lower

five-year forward patent citations (3.967) compared to those in the control group (4.619).

An even more direct comparison of forward patent citations pre-trends between treatment

and control patents is presented in appendix figure E1, which shows the number of citations

received each year for a ten-year window before and after the first Soviet scientist arrives

in the focal patent’s MSA. A violation of the parallel trends assumption would have shown

citations received by each group to follow a divergent path before the migration event at

year zero. While citations received increase for both groups of patents in the pre-migration

period, migration itself does not seem to succeed such a divergence. If our Soviet similarity

assignments had been biased (for instance, “Soviet patents” happen to be “higher quality”

patents), then Soviet-similar patents should show more forward patent citations received over

the years. This is opposite to what we find in appendix figure E1. Finally, assuming that

the use of science in general tends to increase a patent’s tradability (as we argue throughout

this paper), our Soviet similarity assignments would be biased if Soviet-similar patents were

more likely to cite science. However, appendix tables E1 and E2 show that treatment group

patents cite science less often (2.9%) than control group patents (4%). Therefore, to the

extent there is a difference in ex-ante characteristics between Soviet-similar and dissimilar

patents, it is more likely that they introduce a conservative bias to our estimates.
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6 Conclusion

This paper aims at advancing our understanding of how science affects the rate and direction

of innovation. Science, by strengthening the market for technology, can enhance social

welfare by moving inventions to those that are best able to commercialize them, and by

supporting a division of labor between upstream inventors and downstream commercializers.

Science generalizes phenomena into universal categories and unravels the mechanisms that

underpin phenomena, which enhances communication between buyers and sellers, reduces

search costs for buyers, and enables buyers to evaluate and integrate inventions. We provide

evidence consistent with the idea that scientific codification of inventions makes them more

tradable. We further show that for a given invention, a deeper scientific understanding of

the invention increases the likelihood of the invention being traded, likely because potential

buyers are better able to understand and use the invention.

Our main contribution is to establish that science based inventions are more likely to be

traded. Patents that reference a scientific article are 11-16% more likely to be traded than

patents that do not reference science. This relationship is especially strong for inventions

that are novel (different from existing knowledge), which is consistent with the view that

science clarifies concepts embodied in unfamiliar inventions. Patents that are novel are less

likely to be traded than those that are not, but novel patents that cite science are 22% more

likely to be traded than novel patents that do not cite science. This relationship is not due

to unobserved differences in quality of invention or type of inventor. Leveraging the arrival

of Soviet scientists to American cities caused by an exogenous political event (the end of

the Cold War), we find evidence that ex-post increases in scientific understanding of existing

inventions makes them more tradable. All patents are more likely to trade after the arrival

of high-caliber Soviet scientists in their cities, but patents that are semantically similar to

science done in the Soviet Union grow 22% more in trade probabilities compared to those

that are not similar.
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In summary, we offer a large-scale empirical investigation of the relationship between

science and MFT. Inventions based in science are more likely to be traded. In part, this is

because science lowers search costs for buyers and increases their ability to understand and

use the invention. Our findings imply that enhancing scientific understanding can increase

social welfare over and above its role in generating fundamental inventions. Science can also

increase social value by supporting a market for technology, which allocates ownership rights

to the most efficient user of existing inventions, and indirectly, by supporting a division of

innovative labor.
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Table 1: Summary Statistics for Main Variables

Obs. Mean S.D. p10 p50 p90

Patent Publication Year 3,884,291 1998.886 8.725 1986 2000 2010
Reassignment 3,883,777 0.063 0.243 0 0 0
Cite Science 3,883,777 0.186 0.389 0 0 1
Forward Patent Citations (Normalized) 3,884,291 0.924 1.625 0 1 2
5-year Forward Patent Citations 3,884,291 6.093 10.837 0 3 14
Stock Market Value of Patent 1,218,301 12.614 38.122 0 4 27
Combination Familiarity 3,882,310 76.799 386.215 0 1 155
Small Entity 3,689,667 0.226 0.418 0 0 1
Compustat Patent 3,884,291 0.254 0.435 0 0 1
Triadic Patent 3,884,291 0.304 0.460 0 0 1

Notes: Reassignment is a binary variable equal to one if the patent has ever been reassigned in the
USPTO PAD dataset. Cite Science is equal to one if there has been a citation to Microsoft Academic
Graph (MAG), and zero otherwise. Forward Patent Citations (Normalized) counts the number of prior
art citations the patent has received until 2015 and normalizes this quantity by the average number of
forward patent citations received by patents published in the focal patent’s publication year. 5-year
Forward patent citations counts the number of prior art citations the patent has received within five
years of its publication. Stock Market Value of Patent is based on the cumulative abnormal returns
in the firm’s market value at the issuance event of the patent per Kogan et al. (2017). Combination
Familiarity of a patent is constructed by counting the number of times a patent’s IPC sub-class
combinations have appeared in the past (details in Fleming (2001)). Small Entity is equal to one if
an assignee is classified as a small entity by section 41 of the U.S. patent act, and zero otherwise.
Compustat Patent is equal to one if an initial assignee is matched to a Compustat firm, and zero
otherwise. Triadic Patent is equal to one if the patent shares a prior art in the USPTO, EPO, and
JPO, and zero otherwise.
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Table 3: Science, MFT, and entry into invention

(1) (2)
Small Entity Share No. of Sellers

Avg Cites to Science 0.260** 0.062**
(0.034) (0.009)

Avg Forward Patent Citations -0.004 0.021**
(0.009) (0.002)

log(Patent Stock + 1) -0.016** -0.004*
(0.005) (0.002)

Avg of DV 0.281 0.068
IPCs 334 337
Years 31 32
R2 0.918 0.571
N 6,913 7,173

Notes: Unit of observation is at the 4 digit IPC-year level. Avg Cites to
Science is the count of patents in a 4 digit IPC-year that have made a
citation to a peer-reviewed scientific article in MAG from their front page
NPL citation section, normalized by patent stock. Avg Forward patent
citations counts the normalized forward patent citations in each 4 digit
IPC-year and normalizes by patent stock. Small entity share is the number
of small entity (¡500 employee) patents divided by patent stock. Number of
sellers equals the number of unique patent sellers that have been identified
for each 4 digit IPC-year, normalized by patent stock. All columns include
fixed effects for 4-digit IPC and patent publication years. Standard errors
are clustered at the 4-digit IPC level.
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Table 4: Relationship between Science and Patent Reassignment,
by Quality

Stock Market Value Triadic

(1) (2) (3) (4)
below avg above avg No Yes

Cite Science 0.246 0.333* 0.625** 1.468**
(0.154) (0.165) (0.101) (0.150)

Forward Patent Citations (Normalized) 0.458** 0.318** 0.891** 0.809**
(0.101) (0.041) (0.074) (0.088)

Avg of DV 2.966 7.048 5.888 7.182
IPCs 600 609 631 629
Years 31 31 32 32
Firms 380 3,149
R2 0.038 0.187 0.013 0.015
N 374,798 374,418 2,702,037 1,181,739

Notes: The dependent variable is equal to one if the patent has ever been reassigned
in the USPTO PAD dataset and zero otherwise. Stock market value for patents are
calculated by normalizing the Kogan et al. (2017) patent value measure by the market
capitalization of the Compustat firm which owns the patent. Columns 1 and 2 include
patent publication year, 4-digit IPC, and Compustat firm fixed effects, with standard
errors clustered at the firm level. Columns 3 and 4 include patent publication year and
4-digit IPC fixed effects, with standard errors clustered at the 4-digit IPC level. All
coefficient estimates are multiplied by 100 for ease of reporting.
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Figure 1: Science and the Determinants of Patent Trade
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Notes: The bars plot the share of reassigned patent in each group, split by those that cite science and
those that do not. The 1st quadrant splits the sample by whether patent owner names are matched to
Compustat firm names. The 2nd quadrant splits the sample by whether the patent is in the 1st decile
of combination familiarity scores (Novel) or in the 10th decile (Not Novel). The 3rd quadrant splits
the sample by whether patent owner is classified as a “small” entity per section 41 of the U.S. patent
act. Patents owned by non-“small’ owners are classified as “large”. The 4th quadrant first takes patents
owned by non-C4 owners and then splits this sample by whether the patent is in a 4-digit IPC with
the highest (4th quartile) share of four-patentee concentration ratios (heterogeneous) or the lowest (1st
quartile) ratios (homogeneous).

40



A A model of trade in patents

We present a simple model to formalize our comparative statics and clarify the multiple
channels through which the use of science can condition the probability of a patent being
traded.

Let there be I inventors. Some of these could be individuals, universities, or firms. To
start with, assume each inventor is endowed with an invention (i.e., we begin with inventions
being exogenously assigned.) The inventor can commercialize the invention herself and earn
payoff yi where

yi = qi(xi + εi) (7)

where qi is the quality of the ith invention. Inventions based on science may have higher
quality. For the ith invention, there are Ni firms that may buy it to commercialize it them-
selves i.e., there are Ni possible innovators. Each innovator’s baseline payoff is zero. If it
commercializes i′s invention it can earn a payoff yik and zero otherwise.

yik = qi(xik + εik)− τi (8)

In (8), τi represents transaction and transfer costs (henceforth transfer costs), and xik
represents the ability to extract value from invention i of the ith potential buyer. Note that
a key assumption is that transfer costs are independent of the quality of the invention.

Transfer costs have several components.

• Contracting cost: Contracts involve lawyers and meetings, which have direct and indi-
rect costs

• Adaptation Costs: Inventions often need accompanying know-how, some of which may
require training and service.

• Imperfect contracting: Effective commercialization of an invention may require the
cooperation of the inventor. Such cooperation may not be forthcoming, even if con-
tractually agreed upon, in adequate measure.

There are two primary components to xik

• Comparative advantage: how well the resources and capabilities the potential buyer
posses are suited to the commercialize the invention.

• Rent dissipation: The extent to which the potential buyer can enhance its market
power in the downstream product market (or guard against the erosion of its existing
market power if another firm commercializes the invention).

We assume efficient bargaining. Therefore, if trade with at least one of the Ni potential
buyers offers a surplus that is at least as great as the transfer costs, the invention will be
traded. This is an important assumption that sweeps away considerations of asymmetric
information. It also means that we can focus directly on what we observe, namely whether
the invention is traded or not, without having to discuss how the net surplus (gains from
trade minus transaction cost) are divided between the buyer and seller.
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A.1 probability of trade

The invention is not traded if

yi ≥
N

max
k

i{yik} (9)

⇐⇒ xi + εi −
Ni

max
k
{xik + εik} ≥ −

τi
qi

(10)

We assume that εi and εik are distributed iid as Type I extreme value distribution
(Gumbell distribution). This will yield the familiar logit expressions.

The probability of the invention not being traded, P = Pr(no trade)

P (no trade) =
exp(xi + τi

qi
)

exp(xi + τi
qi

) +
Ni∑
k

exp(xik)

=
1

1 +
Ni∑
k

exp(xik − xi − τi
qi

)

(11)

A.1.1 special case

Consider first the case where all buyers are similar except for the idiosyncractic valuation.
That is, suppose xik = x̄i∀k where x̄i is the value that all innovators can derive from the
invention. Then the probability of No Trade can be rewritten as

P (No Trade) =
1

exp(−xi − τi
qi

+ x̄i)Ni + 1
=

1
Ni

exp(−c+ x̄i) + 1
Ni

(12)

Note that the probability of trade, is simply 1− P (No Trade). Equation 12 shows that
science increases the probability of trade through three channels

1. The number of potential innovators,Ni

2. The difference in comparative advantage between inventors and potential innovators
plus any rent-dissipation effects, xi − x̄i

3. The quality of the invention, and the transfer costs, τi
qi

.

A.2 buyer concentration

Consider the no trade condition 11. We wish to understand how this is affected by an
increase in the heterogeneity of buyers (holding the number of buyers and their average xik
constant).22

22From Rothschild and Stiglitz 1970 (Rothschild, M. and Stiglitz, J.E., 1970. Increasing risk: I. A
definition. Journal of Economic theory, 2(3), pp.225-243.) we know that if g(x) is a convex function of x,
then a second order stochastic shift in the distribution of x will imply that Eg(x) will increase.
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Here we prove the special case where we compare 12 with 11. That is, we compare two
cases, one where all external buyers have the same xik = x̄i, and the other where external
buyers vary but Ek[xik] = x̄i.

Note that 11 can be written as

P (no trade) =
1

1 +
Ni∑
k

exp(−xi + xik − τi
qi

)

=
1
Ni

1
Ni

+ 1
Ni

Ni∑
k

exp(xik − ci)
≈ 1

1 +NiEk [exp(xik − ci)]

where ci = xi +
τi
qi

(13)

Comparing 13 and 12, we see that

1

1 +NiEk [exp(xik − ci)]
<

1

1 +Ni(exp(Ek[xik − ci]))

because Ek [exp(xik − ci)] > exp(Ek[xik − ci])

(14)

where the last inequality follows from applying Jensen’s Inequality and recognizing that the
exponential is a convex function, and expectations are being taken over the commercialization
capabilities of the buyers, xik, for a given inventor.

This shows that if there is more inequality among buyers in terms of commercialization
capability xik, the probability of No Trade falls.

A.3 Role of science

Conceptualizing inventions in terms of science reduce τi and perhaps increase qi. The com-
bined result is to increase the effective gains from trade.

A.3.1 Novelty of invention

More novel inventions may not be comprehensible to buyers. Thus, novelty might reduce
Ni. Let the level of novelty be denoted by z and the level of science used in invention be
denoted by s. From 12, we can see that

∂P (no trade)

∂z
= − 1

(exp(−xi − τi
qi

+ x̄i)Ni + 1)2

∂Ni

∂z
≥ 0

∂P (no trade)

∂s
=

exp(−xi − τi
qi

+ x̄i)Ni

qi(exp(−xi − τi
qi

+ x̄i)Ni + 1)2

∂τi
∂s
≤ 0

∂2P (no trade)

∂s∂z
= −

2 exp(−xi − τi
qi

+ x̄i)Ni

qi(exp(−xi − τi
qi

+ x̄i)Ni + 1)3

∂τi
∂s

∂Ni

∂z
≤ 0

(15)

43



As we see in 15, novel inventions are less likely to be traded. However, this effect is smaller
for science based inventions. Put differently, the diminution in the probability of trade due
to greater novelty is less marked for science based inventions.

A.3.2 inventor capabilities

Recall that xi represents the ability of the inventor to derive value from her own invention.
If we call “small” inventors as those with lower xi, these inventors are more likely to sell.
For simplicity of notation, but without any loss of generality, we show the formal derivations
for the case with uniform buyers.

∂P (no trade)

∂xi
=

exp(−xi − τi
qi

+ x̄i)Ni

(exp(−xi − τi
qi

+ x̄i)Ni + 1)2
≥ 0 (16)

inventor capabilities and science As we see in equation 16, larger firms are less
likely to sell (xi is higher for larger firms). To sign the interaction between inventor size and
science, note that 16 can be rewritten as

∂P (no trade)

∂xi
=

a

(a+ 1)2
where

a = exp(−xi −
τi
qi

+ x̄i)Ni

This expression increases with a for a < 1:

d a
(a+1)2

da
=

1− a
(a+ 1)3

Note that a increases with science. Formally

∂a

∂s
= −∂τ

∂s

1

qi
exp(−xi −

τi
qi

+ x̄i)Ni = −∂τ
∂s

1

qi
a ≥ 0 (17)

The effect of size on the probability of trade is conditioned by science. Formally,

∂2P (no trade)

∂xi∂s
=

1− a
(a+ 1)3

∂a

∂s
≤ 0 if a > 1

≥ 0 if a < 1

(18)

Finally, note that the probability of no trade, P (no trade ) = 1
1+a
≈ 0.9 in the sample.

Therefore, a ≈ 1
0.9
−1 ≤ 1. We therefore expect that the probability of no trade will increase

with size, and science will moderate the increase. Put differently, the probability of trade
will fall with size and the use of science in invention will exacerbate the fall.
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A.3.3 buyer concentration and science

Consider the probability of no trade with heterogeneous buyers, as in 11

∂P (no trade)

∂s
=
∂τ

∂s


Ni∑
k

exp(xik − ci)

(
Ni∑
k

exp(xik − ci) + 1)2


=
∂τ

∂s

(
NiEk[exp(xik − ci)]

(NiEk[exp(xik − ci) + 1)]2

)
≤ 0

(19)

note that 21 can be rewritten as

∂P (no trade)

∂s
=
∂τ

∂s

b

(b+ 1)2
≤ 0 where

b = NiE[exp(xik − ci)]

The corresponding derivative for homogenous buyers from 12 is

∂P (no trade)

∂s
=
∂τ

∂s

(
Ni exp(E[xik − ci])

(Ni exp(E[xik − ci]) + 1)2

)
=
∂τ

∂s

a

(a+ 1)2
≤ 0

where a = Ni exp(E[xik − ci])

(20)

The probability of no trade decreases with b for b > 1, but increases with b for b < 1.
Formally, we have that if b < 1

∂ b
(b+1)2

∂b
=

1− b
(b+ 1)3

≥ 0

What is the value of b? Note that the probability of no trade is 1
1+Nib

. In the sample,

the probability of no trade is greater than 90%. This implies that b = 1
9Ni

< 1. A similar
calculation shows a < 1

Therefore, we assume that b < 1, a < 1. Then because b > a, the probability of no
trade increases with science more slowly when buyers are heterogeneous. Put differently, the
probability of trade increases faster with science when buyers are heterogeneous.

Formally, we have that

∂P (no trade)

∂s
|heterog −

∂P (no trade)

∂s
|homog = −∂τ

∂s

(
a

(1 + a)2
− b

(1 + b)2

)
≥ 0

=⇒ ∂P (trade)

∂s
|heterog ≤

∂P (trade)

∂s
|homog

(21)
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A.4 specialization and division of innovative labor

We began by assuming that inventions were exogenously assigned. However, the prospect of
being able to trade an invention, thereby increasing expected returns from inventing, would
make investing in invention more attractive. For simplicity, suppose the inventor captures
the entire surplus from invention. The expected payoff from invention, Π is

Π = c0 ln

(
exp(xi) +Ni(exp(x̄i −

τi
q

)

)
−R (22)

where R is the investment required to produce an invention, and c0 is a constant that depends
on the variability in the idiosyncratic valuations εik. For simplicity we assume that τi = τ(s)
so that transaction costs depend only on the amount of science used. In particular, they do
not depend on the identity of the inventor. By a similar logic, x̄i and Ni also do not vary
with i, although they may vary with industry conditions and the use of science.

A.4.1 Entry into invention

Suppose that potential inventors differ only in the value they could capture by commercial-
izing it themselves. It follows that each potential inventor in given industry and technology
class, with a given amount of science, expects the same transaction costs, quality, and num-
ber of potential buyers. The marginal inventor is indifferent between investing in invention
or not investing. That is the marginal inventor is characterized by x∗23 such that

Π(x∗) = c0 ln

(
exp(x∗) +N(exp(x̄− τ

q
)

)
−R = 0 (23)

Intuitively, and as 23 confirms, that an increase in the number of potential innovators,
or a decrease in transaction cost, the marginal inventor would have a lower xi. That is, more
inventors would invest, creating more invention. Importantly, the effect is due to an increase
in the probability of trade. That is, as Adam Smith noted long ago, enhanced possibility for
trade encourage entry. In this instance, a reduction in the transaction cost in the market for
technology encourages entry into invention, especially for smaller inventors. Similarly, an
increase in the productivity of research (captured by a reduction in R or an increase in q)
would directly increase the probability of trade (via 12). They would also indirectly increase
the probability of trade by reducing the xi associated with the marginal inventor.

Formally, we have that

dΠ(x∗)

ds
=
∂Π(x∗)

∂s
+
∂Π(x∗)

∂x∗
∂x∗

∂s
= 0

=⇒ c0

(
−∂τ
∂s
P (trade) + (1− P (trade))

∂x∗

∂s

)
= 0

=⇒ ∂x∗

∂s
≤ 0

(24)

The result in 24 follows upon noting that the expected payoff of an inventor, Π(x),

23We drop the inventor subscript i because we are focusing on the marginal inventor
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increases with the commercialization capability of the inventor, x, and with science s.

A.4.2 science and the equilibrium in the market for technology

It therefore follows that probability of No Trade will decrease with science, s, directly, as
in 12, but also indirectly, because inventors with a lower ability to commercialize their
inventions, will enter the market. Formally,

dP (no trade)

ds
=

a

(1 + a)2

(
∂τ

∂s
+
∂x∗
∂s

)
≤ 0 (25)
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B Identifying market transactions for patents

We download the 2016 version of the USPTO Patent Assignment Dataset and identify patent
reassignments that may classify MFT transactions. Our framework follows methods pio-
neered by Serrano (2010) and refined by Ma et al. (2017) and Figueroa and Serrano (2019).

We define MFT transactions as transfers of technology between two independent en-
tities. This excludes ownership transfers within firms and purchases of capabilities rather
than technology (e.g. M&As that transfer lab personnel and capital equipment along with
patents). The USPTO records each received patent transfer in a “Reel Frame” (RF) ID, and
has classified the conveyance types of these transfers into assignment of assignor’s interest,
name changes, government interest agreements, security agreements, and release by secured
parties. We exclude all other conveyance types than assignments of assignors’ interest. The
USPTO also identifies employer assignment as the first recorded transaction for a patent
where the patent is transferred alone with an execution date prior to the patent application
disposal date (Graham et al., 2018, p.27). These RF IDs are also removed.

We add several additional checks. First, we exclude assignments whose date is before
the grant date of a patent. While it is possible that a transaction has occurred before the
patent was granted, it is also possible that the patent’s initial assignment was mistaken with
a reassignment to a buyer. Without a way to positively identify pre-grant patent application
purchases, we decide it is safer to exclude these cases to reduce false positives. Second, we
exclude cases where the assignee (“buyer”) names in the PAD records are similar to assignee
names in the USPTO PATSVIEW. The assignee names in PATSVIEW record the initial
assignee name(s) on the granted patent document. Therefore, if the assignee name in the
PAD records are similar to the original owner’s (assignee on patent document), we can rule
out an MFT transfer between two independent entities. Third, we exclude cases where the
assignor (“seller”) of an assignment is similar to the inventor of the patent from USPTO
PATSVIEW. These cases are likely to be corporate employees transferring their patent rights
to their firms per terms in their employment contract (it has been common practice among
large corporations such as Du Pont, IBM, and Google to automatically transfer patent
rights from employees to employers by such contracts). Fourth, we download all completed
acquisitions recorded in SDC Platinum between 1980 and 2015 and match the “Target Name“
and “Acquiror Name“ in SDC to patent assignor and assignee names in PAD. If the buyer-
seller pair of companies in SDC correspond to the buyer-seller pairs in PAD, we exclude them.
Fifth, we also measure the string distance between assignor-assignee pairs so that intra-
corporate reassignments (from, say, a company’s headquarters to its licensing subsidiary)
are dropped. For the second to fifth steps, we judge that names are similar based on Jaro-
Winkler, Jaccard, and a normalized Levehnstein edit distance (python package available
from https://github.com/seatgeek/fuzzywuzzy) after standardizing common suffixes such as
“CORP”, “LTD” and prefixes such as “LEGAL REPRESENTATIVE”. Specifically, we take
one minus the maximum value of the distance measures (which range between zero and one)
and classify those pairs with larger than an appropriate threshold as similar to each other.
We conduct extensive human checks around these thresholds to reduce classification error.
Sixth, we exclude RF IDs with more than 25 patents being transferred, because these are
likely to be part of M&A deals between large firms.

48



C Calculating proximity scores between patents and

scientific publications

Step 1: Bag of words
As a first step to calculating the proximity between a patent and a publication, we use

the bag-of-words approach to extract all words from the claims text of all USPTO patent
documents and title and abstracts of Web of Science peer-reviewed scientific articles. For
each patent and article, we create a vector of all word stems. Each word stem is weighted
by the inverse of its frequency in the complete patent corpus. The inverse frequency index
is

Ii = Ni × (1− pi
P

) (26)

Ni is the number of times ith word stem in the word stem vector appears throughout the
claims section of the USPTO patents. pi is the number of patent documents that contain
the ith word stem, and P is the number of patents issued by USPTO. Each item in the index
represents the weight assigned to extracted word stems according to their specificity across
all USPTO patent documents.24

Step 2: Distance between words
Similar ideas might be described using different text. Thus, a major challenge is how to

compute the “technical distance” between two words, that is how to calculate the likelihood
that two different words describe the same technical concept. To address this challenge, we
develop a dictionary that aims to measure the probability that two distinct words refer to
the same technical concept. For this purpose, we identify words used in patent documents
deemed to be technically similar by human experts, the patent examiners themselves. We
use prior-art patents referenced by examiners in rejecting patent applications for a lack of
novelty or obviousness to compute a measure of technical distance between two given words.

To create the technical distance between two words we follow these steps. First, we
extract from the USPTO’s Public PAIR (Patent Application Information Retrieval) system
a random sample of about 150,000 non-final rejection letters. We include only non-final
rejection letters with rejections pertaining to novelty and non-obviousness as outlined in 35
U.S.C. 102 and 35 U.S.C. 103 of the USPTO’s Manuals for Patent Examining Procedure.
The letters are available as images and thus are converted into a text format. For each patent
with a non-final rejection, we extract the text of the original patent application associated
with that rejection as well as the text of the prior-art patents cited as the reason for the
rejection (“rejection prior-art patents”). In cases where multiple rejections are associated
with the same application, we extract the relevant (modified) application claims for each
rejection.

24An important part of the word stemming process is mapping acronyms and technical concepts. For
example, the acronym RAM refers to Random Access Memory. Thus, in our textual comparison algorithm,
when the sequence of words Random Access Memory appears, we collapse it into RAM. Acronyms appear
in capital letters on patent documents. We retain all words with at least two capital letters and manually
search for their meaning. To mitigate cases where multiple meanings exist for a given acronym, we preform
the acronym-meaning match at the four-digit IPC level. (Chemical compounds also appear in capital letters,
but we leave them unchanged.)
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Second, we extract all relevant word stems from the claims section of the focal patent
application and corresponding prior-art patents listed by the patent examiner as the basis
for a rejection.25 At the end of this step, we have relevant word stems extracted from the
rejected applications and prior-art patents listed on non-final rejection letters. Next, we
calculate the proximity between each pair of the word stems based on their co-occurrence.
To account for the baseline tendency of two word stems to co-occur across two documents,
for each rejected application and rejection prior-art patent pair, we construct a control pair
by linking the rejected application with a control patent that was not cited as a reason for
the rejection but is in the same 4-digit IPC (International Patent Classification) and has
the same application year as the rejection prior-art patent. Proximity between a pair of
word stems is calculated as the ratio of the number of times the pair appears in the rejected
application and rejection prior-art patent to the number of times it appears in the rejected
application and the control prior-art patent. More precisely, proximity between two word
stems is calculated as:

Proximityw1,w2 =
(A
⋃
R)w1,w2

(A
⋃
C)w1,w2

(27)

(A
⋃
R)w1,w2 is the number of times the words w1 and w2 co-occur within the focal ap-

plication A and rejection prior-art patent R. (A
⋃
C)w1,w2 is the number of times the words

w1 and w2 co-occur in the focal application A and control patent C. Because the same
word stem pair w1 and w2 can co-occur in more than one application and rejection prior-art
patent pair, we average the proximity scores between w1 and w2 across all application and
rejection prior-art patent pairs, denoted by P̄W1i,W2i .

Step 3: Textual overlap between documents
The final step of our algorithm is to construct a similarity score between a pair of patent

and publication based on their words and the “technical distance” between these words from
Step 2. To derive the textual proximity between a patent and a scientific article, we create a
vector of words for each document with their corresponding weights (i.e. inverse frequency)
as described in step 1. We then calculate the cosine proximity score between the two word
vectors W1 and W2, each vector consisting of n elements, while taking into account the
average word pair proximity, P̄W1i,W2i calculated in step 2:

PSW1,W2 =

∑i=n
i=1 W1i ×W2i × P̄w1i,w2i√∑i=n

i=1 W12
i

√∑i=n
i=1 W22

i

(28)

We normalize the proximity score PSW1,W2 to be between 0 and 1 by dividing it by
max(PSW1i,W2i). A score of one indicates the highest similarity, and a score of zero indicates
the lowest similarity between two documents.

Step 4: Aggregating the similarity measures
Given the pairwise similarity scores between publications and patents, we rank patents

25We use original applications rather than the final patent documents because claims can change through
patent examination process and thus using the original applications allows us to compare the relevant set of
claims between the applications and rejection prior-art patents.
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from the most similar to the least similar for each Web of Science publication. We cut off the
top 100 such patents per publication and then count the number of these “top 100-matches”
per patent (“WoS Similarity”). We then identify Soviet-era journals from the ISF’s eligible
publications list from Gangui (2015) (reproduced in appendix C.2 below)) and count the
number of times patents are ranked top 100 similar to the articles in these journals (“Soviet
Similarity”). This allows us to calculate a measure of how similar a patent i is to a Soviet
publication normalized by how similar it is to scientific publications in general:

Normalized Soviet Similarityi =
Soviet Similarityi
WoS Similarityi

We define a patent to be in the “treatment” group if Normalized Soviet Similarityi > 0.5.
In unreported regressions, we change the threshold value from 0.5 to 0.9, and are able to
replicate all results in table 5.

C.1 Comparing Soviet Patents to Non Soviet Patents

We also compare the relative frequencies with which “Soviet” patents occur at the 3 digit
IPC level and do not find a systematic concentration in certain technical areas. Table C1
counts the number of Soviet and non-Soviet patents in each 3 digit IPC, downward sorts
them and shows the five most frequent and five least frequent IPC classes. If Soviet similarity
would vary by technology class, then we would expect to see the rankings to show no overlap
between the two — we find the opposite: two out of the top and bottom five IPCs are
common in both Soviet and non-Soviet tables.
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Table C1: Number of Patents per 3-digit IPCs, by Soviet Similar-
ity

Similar to Soviet Science

Rank 3 Digit IPC No. of Patents Description

1 H01 54516 Basic electric elements
2 B60 22217 Vehicles in general
3 H04 21166 Electric communication tech-

nique
4 G06 18293 Computing; calculating;

counting
5 G11 17412 Information storage
... ... ... ...

117 C40 19 Combinatorial technology
118 C05 8 Fertilisers; manufacture

thereof
119 C14 8 Skins; hides; pelts; leather
120 B82 5 Nanotechnology
121 C13 3 Sugar industry

Not Similar to Soviet Science

Rank 3 Digit IPC No. of Patents Description

1 H01 307002 Basic electric elements
2 G06 278471 Computing; calculating; counting
3 A61 266123 Medical or veterinary science; hygiene
4 H04 231120 Electric communication technique
5 G01 227601 Measuring; testing
... ... ... ...

117 C13 460 Sugar industry
118 D07 431 Ropes; cables other than electric
119 C14 427 Skins; hides; pelts; leather
120 B82 370 Nanotechnology
121 G12 363 Instrument details

Notes: This table ranks the number of patents per 3 digit IPC class by whether
they are close to a Soviet scientific publication.

C.2 Soviet Journal List (International Science Foundation)

Journal Name Number
of Arti-
cles

ACOUSTICAL PHYSICS 3,031
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ANTIBIOTIKI I KHIMIOTERAPIYA 797
ARKHIV PATOLOGII 3,016
ASTRONOMICHESKII ZHURNAL 3,910
BIOFIZIKA 7,130
BIOKHIMIYA 1,601
BIOLOGICHESKIE MEMBRANY 2,784
BIOLOGIYA MORYA-MARINE BIOLOGY 1,293
BIOORGANICHESKAYA KHIMIYA 4,725
COMBUSTION EXPLOSION AND SHOCK WAVES 6,241
DIFFERENTIAL EQUATIONS 7,529
DOKLADY AKADEMII NAUK 10,801
DOKLADY AKADEMII NAUK SSSR 93,913
EURASIAN SOIL SCIENCE 4,477
FARMAKOLOGIYA I TOKSIKOLOGIYA 3,699
FIZIKA METALLOV I METALLOVEDENIE 10,246
FIZIKA NIZKIKH TEMPERATUR 3,495
FIZIKA TVERDOGO TELA 19,093
FIZIOLOGICHESKII ZHURNAL 1,543
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS 2,156
GENETIKA 7,089
GEOKHIMIYA 5,309
GEOMAGNETIZM I AERONOMIYA 5,424
GEOTECTONICS 1,326
HIGH TEMPERATURE 9,048
INORGANIC MATERIALS 16,135
IZVESTIYA AKADEMII NAUK FIZIKA ATMOSFERY I OKEANA 952
IZVESTIYA AKADEMII NAUK SSSR SERIYA BIOLOGICHESKAYA 2,621
IZVESTIYA AKADEMII NAUK SSSR SERIYA FIZICHESKAYA 11,877
IZVESTIYA AKADEMII NAUK SSSR SERIYA GEOLOGICHESKAYA 1,970
IZVESTIYA SIBIRSKOGO OTDELENIYA AKADEMII NAUK SSSR SERIYA
KHIMICHESKIKH NAUK

1,333

IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA 9,973
IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICH-
ESKAYA TEKHNOLOGIYA

5,147

IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA 2,672
JETP LETTERS 14,958
JOURNAL OF ANALYTICAL CHEMISTRY OF THE USSR 6,866
JOURNAL OF EVOLUTIONARY BIOCHEMISTRY AND PHYSIOLOGY 2,276
JOURNAL OF MICROBIOLOGY EPIDEMIOLOGY AND IMMUNOBIOLOGY
USSR

431

KARDIOLOGIYA 9,861
KHIMICHESKAYA FIZIKA 2,485
KHIMIKO-FARMATSEVTICHESKII ZHURNAL 7,516
KINETICS AND CATALYSIS 8,095
KOLLOIDNYI ZHURNAL 697
KOORDINATSIONNAYA KHIMIYA 2,377
KOSMICHESKAYA BIOLOGIYA I AVIAKOSMICHESKAYA MEDITSINA 2,421
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KRISTALLOGRAFIYA 6,531
KVANTOVAYA ELEKTRONIKA 9,749
KYBERNETIKA 2,179
MATHEMATICAL NOTES 8,376
MEASUREMENT TECHNIQUES 9,433
MIKOLOGIYA I FITOPATOLOGIYA 2,739
MIKROBIOLOGIYA 733
MOLEKULYARNAYA BIOLOGIYA 293
NEUROPHYSIOLOGY 2,290
OKEANOLOGIYA 4,137
OPTIKA I SPEKTROSKOPIYA 15,537
PARAZITOLOGIYA 1,469
PETROLEUM CHEMISTRY 3,025
PISMA V ZHURNAL TEKHNICHESKOI FIZIKI 5,682
PRIBORY I TEKHNIKA EKSPERIMENTA 2,669
PRIKLADNAYA MATEMATIKA I MEKHANIKA 582
RADIOCHEMISTRY 926
RADIOTEKHNIKA I ELEKTRONIKA 10,540
RUSSIAN JOURNAL OF INORGANIC CHEMISTRY 5,792
RUSSIAN JOURNAL OF PLANT PHYSIOLOGY 2,804
RUSSIAN MATHEMATICAL SURVEYS 4,004
SBORNIK MATHEMATICS 1,728
SEMICONDUCTORS 6,876
SIBERIAN MATHEMATICAL JOURNAL 5,034
TEORETICHESKAYA I EKSPERIMENTALNAYA KHIMIYA 1,297
TERAPEVTICHESKII ARKHIV 14,261
THEORETICAL AND MATHEMATICAL PHYSICS 6,590
THEORY OF PROBABILITY AND ITS APPLICATIONS 3,612
UKRAINSKII BIOKHIMICHESKII ZHURNAL 2,914
UKRAINSKII FIZICHESKII ZHURNAL 4,436
USPEKHI FIZICHESKIKH NAUK 4,148
USPEKHI KHIMII 3,221
VESTNIK AKADEMII MEDITSINSKIKH NAUK SSSR 2,218
VESTNIK AKADEMII NAUK SSSR 3,989
VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA
MEKHANIKA

3,182

VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 2 KHIMIYA 4,187
VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 3 FIZIKA ASTRONOMIYA 2,656
VOPROSY MEDITSINSKOI KHIMII 4,291
VOPROSY ONKOLOGII 4,585
VOPROSY VIRUSOLOGII 4,206
VYSOKOMOLEKULYARNYE SOEDINENIYA SERIYA A 7,905
VYSOKOMOLEKULYARNYE SOEDINENIYA SERIYA B 5,229
ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI 11,724
ZHURNAL FIZICHESKOI KHIMII 26,686
ZHURNAL OBSHCHEI BIOLOGII 2,923
ZHURNAL OBSHCHEI KHIMII 30,563
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ZHURNAL ORGANICHESKOI KHIMII 16,450
ZHURNAL TEKHNICHESKOI FIZIKI 13,372
ZHURNAL VYSSHEI NERVNOI DEYATELNOSTI IMENI I P PAVLOVA 6,265
ZOOLOGICHESKY ZHURNAL 8,100

Notes: The list comprises prominent Soviet and Russian journals in which eligible ISF
applicants needed to show publication records for (Ganguli, 2017). The number of articles
is calculated by the authors using Web of Science data.

D Assigning geolocational data to patents

We use the address of an inventor to determine the location of a patent. If there are more than two
inventors, we take the address that appears the most frequent as the location of the patent (majority
vote). In case of a tie, we randomly take one of the addresses as the patent’s location. We source
the inventor addresses from the HBS inventor dataset, which contains city and state information for
inventors for all U.S. patents from 1975 to 2010. Since cities may often be too small and states too
large to gauge the impact of immigration on the cost of knowledge transfer for buyers and sellers of
patents, we classify each city that appears in the HBS dataset into Metropolitan Statistical Areas
(MSA) and Primary Metropolitan Statistical Areas (PMSA) current as of 1990. Specifically, we
download the historical delineation files for the 1990 Decennial Census from the Census TIGER
database.26 We also download delineation files for U.S. cities from the ESRI USA data available
from Baruch’s Geoportal website.27 We then use the “spatial join” feature in ArcGIS Pro in order
to determine which cities lie within our 179 MSAs and PMSAs. Cities that are not classified within
an MSA or PMSA are classified by their state e.g., “Not in MSA/PMSA California.” Patents are
then classified into one of the MSA/PMSAs based on the majority rule described above.

26https://www.census.gov/geo/maps-data/data/tiger-line.html
27https://www.baruch.cuny.edu/confluence/display/geoportal/ESRI+USA+Data
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E Comparison of Patents by Content Similarity to So-

viet Science

Table E1: Summary Statistics for Patents Close to Soviet Science

count mean sd p10 p50 p90

Patent Publication Year 25911 1986.863 4.710 1981 1987 1993
Reassignment 25911 0.095 0.293 0 0 0
Cite Science 25911 0.029 0.167 0 0 0
Forward Patent Citations (Normalized) 25911 0.977 1.179 0 1 2
5-year Forward Patent Citations 19424 3.967 4.557 1 3 8
Stock Market Value of Patent 9976 7.761 10.927 1 4 18
Combination Familiarity 25900 66.057 141.791 0 3 209
Small Entity 20028 0.376 0.484 0 0 1
Compustat Patent 25911 0.373 0.484 0 0 1
Triadic Patent 25911 0.167 0.373 0 0 1

Table E2: Summary Statistics for Patents NOT Close to Soviet Science

count mean sd p10 p50 p90

Patent Publication Year 94827 1986.960 4.913 1981 1987 1993
Reassignment 94827 0.080 0.272 0 0 0
Cite Science 94827 0.040 0.195 0 0 0
Forward Patent Citations (Normalized) 94827 1.085 1.320 0 1 2
5-year Forward Patent Citations 72987 4.619 5.603 1 3 10
Stock Market Value of Patent 48144 9.108 16.324 1 5 20
Combination Familiarity 94794 50.750 129.224 0 1 153
Small Entity 72285 0.260 0.439 0 0 1
Compustat Patent 94827 0.502 0.500 0 1 1
Triadic Patent 94827 0.217 0.412 0 0 1

Notes: Reassignment is a binary variable equal to one if the patent has ever been reassigned in
the USPTO PAD dataset. Cite Science is equal to one if there has been a citation to MAG, and
zero otherwise. Forward Patent Citations (Normalized) counts the number of prior art citations
the patent has received until 2015 and normalizes this quantity by the average number of forward
patent citations received by patents published in the focal patent’s publication year. 5-year Forward
patent citations counts the number of prior art citations the patent has received within five years
of its publication. Stock Market Value of Patent is based on the cumulative abnormal returns in
the firm’s market value at the issuance event of the patent per Kogan et al. (2017). Combination
Familiarity of a patent is constructed by counting the number of times a patent’s IPC sub-class
combinations have appeared in the past (details in Fleming (2001)). Small Entity is equal to one
if an assignee is classified as a small entity by section 41 of the U.S. patent act, and zero otherwise.
Compustat Patent is equal to one if an initial assignee is matched to a Compustat firm, and zero
otherwise. Triadic Patent is equal to one if the patnet shares a prior art in the USPTO, EPO,
and JPO, and zero otherwise. Treatment Group is defined as patents with a normalized similarity
score to Soviet journals above 0.5 (details on classification method in section 5).
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Figure E1: Forward Patent Citations by Treatment Group
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Notes: This graph plots forward patent citations per patent received by patents in the treatment and
control group for 10 years before and after the first Soviet scientist migrant arrived in the focal patent’s
MSA. The timing and location of migrants are based on data from Ganguli (2015)
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