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1 Introduction

A well-functioning Market for Technology (MFT) enhances welfare by allowing inventors to sell or license

inventions to innovators who may commercialize them more efficiently. The past several decades have

witnessed a rise of a Market for Technology (MFT). Estimates based on Graham et al. (2018) show that

patent reassignments have risen tenfold from around 2,000 to over 20,000 cases between 1980 and 2016.

As well, U.S. corporations have reported a steady increase in royalty receipts and payments for industrial

processes abroad, from $1.5 billion and $0.4 billion respectively in 1987 to $12.8 billion and $4.5 billion in

2017.1 University licensing revenues have increased tenfold over an even shorter period, from $218 million

in 1991 to $2.5 billion in 2015 (AUTM, 2015). At the same time, the reliance of inventions on science has

increased, as indicated by the rise in the share of patents citing science from 4% to 28% of all U.S. utility

patents between 1980 and 2015 (Marx, 2019).2 In this paper, we relate these two phenomena theoretically

and empirically. Specifically, we investigate whether reliance on science increases the likelihood that the

resulting invention will be traded by the inventor, and explore the possible channels for the relationship.

We define science as knowledge that is codified in the scientific and engineering literature. Inventions

can be said to rely on science if they arise from scientific discoveries, if they draw upon scientific knowledge

in important ways, or if they are conceptualized in scientific terms. Reliance on science may result in

higher quality inventions, but may also increase the likelihood of trade by reducing transfer costs and

increasing gains from trade. Science elucidates and codifies from empirical regularities the mechanisms

underlying natural phenomena (Arora and Gambardella, 1994; Mokyr, 2002). Inventions conceptualized

in scientific terms may be codified more effectively and their “metes and bounds” delineated more crisply,

thereby reducing contracting frictions with potential buyers. Furthermore, codification in scientific terms

may facilitate the discovery of new applications, more valuable than those contemplated by the original

inventor, thereby raising potential gains from trade.

We develop a simple analytical framework which incorporates three mechanisms through which

reliance on science could affect the probability of trade (MFT): invention quality, transaction costs, and

1Excludes receipts and payments from affiliates. Data for 2017 from BEA website
(https://apps.bea.gov/iTable/iTable.cfm?reqid=62step=9isuri=1&product=4); data for 1987 from the scanned issues
of the Survey of Current Business. 1921-2014. https://fraser.stlouisfed.org/title/46, accessed on March 11, 2019.

2This rise has coincided with an increase in the amount of scientific research produced each year. In 2016, 32,246 “hard
science” doctorates were awarded in the United States, which is more than twice the number in 1986 (13,914) (Thurgood
et al., 2006).“Hard science” includes Science and Engineering, excluding Social Sciences, Education, Humanities and Arts.
Globally, the publication of peer-reviewed scientific articles has grown at an accelerating rate, with annual growth rates
of 1.8% in the 1980s rising to around 4.01% in the 1990s and 3.99% in the 2000s. In aggregate, 1.7 million articles were
published in 2016, compared to just over 500 thousand in 1980. (Authors’ calculations based on Clarivate Web of Science.)
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gains from trade. In turn, these have separate implications for how the relationship between reliance

on science and probability of trade differ, by inventor size and by invention novelty. The market level

equilibrium with entry into invention shows that an increase in demand in MFT encourages the entry

of smaller inventors. Insofar as reliance on science makes it easier to trade inventions, the entrants are

more likely to rely on science for their inventions and to trade their inventions. This also highlights

the empirical challenges in estimating the effect of reliance on science on MFT. Specifically, insofar as

greater demand attracts specialized research organizations (e.g., universities and small firms) to supply

inventions for trade, and insofar as we do not measure the commercialization capability of the inventor

properly, this would lead to a positive association between the observed reliance on science in invention

and the propensity to trade. More generally, unobserved differences in demand conditions in MFT may

bias the estimated relationship away from the true one.

We mitigate this concern in several ways. First, at the patent level, we control for size using a

variety of measures, and show that not only does the relationship continue to hold but that MFT-science

relationship is stronger for small inventors, as predicted by our model. Second, we show that the MFT-

science relationship is systematically stronger for novel inventions, making it unlikely that unobserved

heterogeneity is the only cause of the relationship. Third, we aggregate up to the IPC level to study how

the proportion of science-based patents is related to the proportion of patents that are traded. Consistent

with our analytical framework, reliance on science is associated with entry of inventors, and a greater

share of specialised inventors. However, the principal payoff from the IPC level analysis is that we can

exploit changes in U.S. government funding of research following the collapse of the Soviet Union as a

source of exogenous variation in the reliance on science. The identifying assumption is that the reliance

on science is greater when the supply of relevant science increases for reasons unrelated to trade. We

instrument for the share of inventions relying on science using changes in government funding to scientific

fields relevant to the focal patent. We show that scientific output rises in response to government funding,

which in turn increases the share of science-based patents, and consequently, a higher rate of trade.

We use data on U.S. patents and scientific publications between 1980 and 2016. We measure reliance

on science by whether a patent cites a scientific article (Marx and Fuegi, 2020). This dataset matches

front page Non Patent Literature (NPL) citations in U.S. patents to peer-reviewed scientific publications

from Microsoft Academic Graph (MAG). We validate this as a measure of reliance on science in a variety

of ways, and show further that our results are robust to using a textual similarity measure. We use patent

reassignments from the USPTO Patent Assignment Database (PAD) to measure transactions in MFT.
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We present three main findings. First, a patent that cites a scientific publication has a 23% higher

probability of being traded compared to a patent that does not cite science. After we control for quality

using number of claims, triadic patenting status, (and stock market value for a subset of patents matched

to listed firms), the magnitude of the science-MFT coefficient is reduced by a third, but still positive

and statistically significant. We interpret this as suggesting that reliance on science is related to MFT in

other ways, not just through quality.

Second, consistent with the view that science increases gains from trade, we find that the relationship

between science and MFT is four times larger for small firms compared to large firms. Since larger firms

already have high commercialization capabilities (and hence derive lower value from selling), reliance on

science will have a smaller effect on the gains they can reap from selling their invention compared to

smaller firms. We also find that the science-MFT relationship is about a third larger for patents using

a one standard deviation “newer” combination of technological subclasses (Fleming, 2001). Unfamiliar

inventions are likely to be more difficult for buyers to evaluate, but when such inventions are based in sci-

ence, buyers may gain a better understanding of otherwise unfamiliar technological components. We also

find that reliance upon more recent science is more strongly associated with patent trade. This suggests

that the principal channel through which science affects technology markets is not by reducing transfer

costs, since mature science is more likely to provide a “common language” or background knowledge for

market participants (Arora and Gambardella, 1994). Newer science, and more specialized science, on

the other hand, is arguably more important in illuminating uncharted applications of inventions, thereby

increasing gains from trade.

Third, we present instrumental variable results that are based on an exogenous change in the avail-

ability of science, which affects the prevalence of science-based inventions unrelated to trade conditions.

After the fall of the Soviet Union, federal funding for research fell by almost 40% for Space and Defense

between 1986 and 1992, whereas it doubled in Medical and Energy. These changes led to substantial

variation in the supply of new knowledge, and therefore, variation in the reliance on science in different

fields of invention. The geopolitical circumstances that precipitated the end of the Cold War are exoge-

nous to MFT. We find that patent classes with a standard deviation increase in the share of science-based

patents experience a 6.5% increase in the share of reassigned patents. Our IV estimates are 13% smaller

than our OLS estimates, but still positive and statistically significant.

Our main contribution is to establish that reliance on science enhances technology trade. We build

on the literature on MFT (Ziedonis, 2004; Serrano, 2010; Serrano et al., 2015; Serrano, 2018; Ma et al.,
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2017; Arque-Castells and Spulber, 2017; Arora and Fosfuri, 2000; Gans et al., 2002). Gans et al. (2008)

and Galasso and Schankerman (2018) identify the effect of a reduction in transaction costs from the res-

olution of uncertainty around patent property rights (from USPTO allowance events and court decisions

respectively) on MFT. With the exception of Marco et al. (2017), the relationship between science and

MFT has not been explored. We use exogenous variation in the availability of science to provide the first

estimate of the causal impact of reliance on science on MFT.

We also contribute to the literature that aims at quantifying the social returns to science (Griliches,

1957; Mansfield, 1980; Arora et al., 2020). Our results suggest that science contributes to social welfare

through a separate channel – the efficient allocation of inventions, and indirectly therefore, by promoting

a division of innovative labor.3 Jones (2009) argues that the growing “burden of knowledge” implies

increasing individual specialization and greater need for cooperation. The market for technology is an

important mechanism for facilitating such cooperation. To the best of our knowledge, this mechanism of

the social returns to science has not been previously systematically explored empirically.4

A secondary contribution is to elucidate the different channels through which reliance of science is

related to the market for technology. Inventions based on scientific discoveries may be higher in quality.

However, there are other channels as well. Our empirical results suggest that the reliance on science in

invention is also associated with lower transaction costs and higher gains from trade. By clarifying the

underlying mechanisms of unfamiliar inventions, and using standard terms, the relevance of the patent

may be more apparent to a wider set of buyers.5 Put differently, scientific inventions offer greater gains

from trade. Realizing these gains from trade must contend with transaction costs, including the costs

of transferring tacit know-how as well as opportunism by buyers or sellers. A fundamental problem

of selling knowledge is that the bargaining process requires inevitably disclosing the “secret sauce” to

the buyer (Arrow, 1962; Anton and Yao, 1994). A mirror problem for the buyer is that inventions

often require complementary tacit know-how to exploit, and therefore require the active cooperation

3The evolution of Light Emitting Diode (LED) technology illustrates this point. Semiconductors that emit light were
discovered as early as 1907, when Henry Round, a British radio engineer, observed a light yellow light emitting from
his silicon carbide-based detector. However, the mechanisms behind this observation required a better understanding of
quantum theory before the phenomenon could be applied more broadly. Therefore, early LED inventions were done in
vertically integrated firms such as TI (infrared LED in 1961) and GE (red LED in the same year) (Sethi, 2013; Steven-
son, 2009). Deeper scientific understing allowed specialized firms such as Universal Display Corporation (UDC) to en-
ter by licensing their intellectual property on dopants to incumbents. See for instance UDC and BASF’s patent deal
in IMSExpert. “$96M in OLED Patents, “Fruitful” Purchase for 2017”. National Law Review. August 12, 2016 Fri-
day. https://advance-lexis-com.proxy.lib.duke.edu/api/document?collection=newsid=urn:contentItem:5KFJ-DRC1-F03R-
N0XF-00000-00context=1516831.

4Our paper is also related to the growing literature that examines the use of science in inventions using patent citations
to science (Narin et al., 1997; Azoulay et al., 2015; Fleming et al., 2019; Agrawal and Henderson, 2002; Belenzon and
Schankerman, 2009; Fleming and Sorenson, 2004; Ahmadpoor and Jones, 2017; Veugelers and Wang, 2019)

5The Bessemer process, for instance, diffused rapidly after its metallurgical properties were sufficiently understood.
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of the seller (Arora, 1995; Von Hippel, 1994; Polanyi, 2015; Kogut and Zander, 1992). Science can

help codify a greater share of this tacit complementary knowledge and reduce the risk of hold-up and

bargaining breakdowns (Galasso and Schankerman, 2014; Merges and Nelson, 1990). Scientific patents

are “crisper”, which helps potential buyers better understand what they are buying.6 In sum, reliance on

science reduces transaction costs because scientific inventions are easier to codify, and cheaper to transfer,

and less vulnerable to contracting failures.

2 A model of trade in patents

We present a simple model to clarify the relationship between science and MFT. There are I inventors.

Each inventor is endowed with an invention, whose use of science is indexed by s. In subsection 2.4 we

consider entry into invention but for now, I and s are given. The inventor can commercialize the invention

herself and earn yi = qi(xi + εi), where qi is the quality of the ith invention, and xi is the expected value

the inventor can extract, and εi represents the idiosyncratic component of value.

For the ith invention, there are Ni firms that may buy it to commercialize it themselves, earning a

payoff yik (and zero otherwise), where yik = qi(xik + εik)− τi.7 Here, τi represents transaction costs, and

xik represents the systematic component of the value the kth potential buyer can extract from invention

i, and εik is the idiosyncratic component. Transaction costs have several components. These include

contracting costs, such as legal fees, and trading frictions due to imperfect contracting, as well as the cost

of transferring accompanying know-how. The primary determinant of xik is commercialization capability

of the buyer, reflecting how well the potential buyer commercialize the invention, although it may also

reflect ability to enforce patents (Galasso et al., 2013).

We assume efficient bargaining: If trade with at least one of the Ni potential buyers offers a surplus

that is at least as great as the transaction costs, the invention will be traded. This assumption sweeps

away considerations of asymmetric information, or how the joint surplus is divided between the buyer

and seller.

6A prime example is the chemical industry, where patents are more effective tools of protecting fruits of R&D thanks to
their reliance on the explicit description of “formulae, reaction pathways and operating conditions” represented via Markush
structures work better in protecting property rights (Arora and Fosfuri, 2000; Levin et al., 1987).

7We assume that the inventor and potential buyers are equidistant from each other in the product space, so that any
rent dissipation is the same, regardless of who commercializes the invention. Hence the baseline payoffs can be normalized
to zero for all.

5



2.1 Probability of trade

The invention is not traded if yi ≥
Ni

max
k
{yik} ⇐⇒ xi + εi −

Ni
max
k
{xik + εik} ≥ − τi

qi
. We assume that εi

and εik are distributed iid as Type I extreme value distribution (Gumbell distribution).8 The probability

the invention is not traded, P = Pr(No Trade)

P (No Trade) =
exp(xi + τi

qi
)

exp(xi + τi
qi

) +
Ni∑
k

exp(xik)

=
1

1 +
Ni∑
k

exp(xik − xi − τi
qi

)
(1)

Equation 1 illustrates, as discussed earlier, that reliance on science can increase trade through gains from

trade, xik − xi, and through a reduction in transaction costs relative to the quality of the invention,

τi
qi

.9 The combined effect is to increase the probability of trade. To minimise clutter, we feature the

transaction cost channel in the algebra below. Formally,

Result 0 Science based inventions are more likely to be traded.

2.2 Role of science

2.2.1 Inventor capabilities

Recall that xi represents the ability of the inventor to derive value from her own invention. If we call

“small” inventors as those with lower xi, these inventors are more likely to sell.10

∂P (no trade)

∂xi
=

exp(−xi − τi
qi

+ x̄i)Ni

(exp(−xi − τi
qi

+ x̄i)Ni + 1)2
=

a

(a+ 1)2
≥ 0, where

a = Ni exp(−xi −
τi
qi

+ x̄i)

(2)

2.2.2 Inventor capabilities and science

∂2P (no trade)

∂xi∂s
=

1− a
(a+ 1)3

∂a

∂s


≤ 0 if a > 1

≥ 0 if a < 1

(3)

8We normalize the scale parameter to unity and the location parameter to zero. This normalization eases notation and
does not affect the results.

9Through out we normalize transaction costs by invention quality. The gains from trade channel is explicitly featured
when considering novel inventions.

10For ease of exposition, we show the proof with homogeneous buyers, where xik = x̄i∀k where x̄i is the value that the

buyer can derive from the invention, the probability of No Trade can be rewritten as
1

Ni exp(x̄i − xi − τi
qi

) + 1
=

1

a+ 1
.
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The probability of no trade, P (no trade ) =
1

1 + a
≈ 0.9 in the sample.11 Therefore, a ≈ 1

0.9 − 1 ≤ 1

so that the science will accentuate the increase in the probability of trade as firm size falls. Intuitively,

smaller firms have greater net surplus from trade x̄i − xi − τ . Their probability of trade will be more

responsive to a decrease in τ or an increase in x̄i, as long as the pdf of ε is monotonically increasing. This

will typically be the case when the probability of trade is low. Formally,

Result 1 Smaller firms are more likely to trade their inventions than larger firms, and the difference

increases for science-based inventions.

2.3 Novelty of invention

Novel patents are likely to have greater variation across buyers in their ability to extract value. We show

greater heterogeneity among buyers increases trade, and this effect is stronger for science based novel

inventions. Novelty may also affect transaction cost, which we analyze later.

2.3.1 Buyer heterogeneity

We analyze how the no trade condition in equation 1 is affected by an increase in the heterogeneity of

buyers. We compare two cases, one where all external buyers have the same xik = x̄i, and the other

where external buyers vary but Ek[xik] = x̄i, and we set qi = 1 to ease notation.

P (No Trade|heterog) =
1

1 + b
< P (No trade|homog) =

1

1 + a
, b =

Ni∑
k

exp(xik − τ − xi) (4)

where the inequality follows from recognizing that the exponential is a convex function and applying

Jensen’s Inequality, so that b > a. Further, greater heterogeneity among buyers in terms of commercial-

ization capability, xik, reduces the probability of No Trade.

∂P (No Trade)

∂s

∣∣∣∣
heterog

=
∂τ

∂s

b

(b+ 1)2
,
∂P (No Trade)

∂s

∣∣∣∣
homog

=
∂τ

∂s

a

(a+ 1)2 (5)

Because 1 > b > a, the probability of trade increases faster with reliance on science when buyers are

11Note that
∂a

∂s
= −∂τ

∂s

1

qi
exp(−xi −

τi
qi

+ x̄i) = −∂τ
∂s

1

qi
a ≥ 0.

7



heterogeneous. That is

∂P (Trade)

∂s

∣∣∣∣
heterog

− ∂P (Trade)

∂s

∣∣∣∣
homog

=
∂τ

∂s

(
a

(1 + a)2
− b

(1 + b)2

)
≥ 0 (6)

Result 2 The probability of trade increases with science faster when buyers are heterogeneous.

The foregoing argument also has implications for the relationship between novelty and reliance on science.

Insofar as novelty implies greater heterogeneity in valuation, novel inventions are more likely to be traded

than other inventions, and reliance on science enhances the effect of novelty. However, it is likely that

novel inventions involve greater transaction costs. For instance, novel inventions are more likely to

require the transfer of tacit knowledge for successful implementation. Therefore, buyer heterogeneity and

higher transaction costs cut in opposite directions, and the net effect on the level of trade is ambiguous.

Nonetheless, if reliance on science is more effective in reducing transaction costs for novel inventions, then

even if the effect of novelty is ambiguous, we show that reliance on science will enhance the likelihood of

trade for novel inventions.

Science is likely to be more effective in reducing transaction costs for novel inventions. The scientific

basis of such inventions will make their potential value more apparent to buyers, and it should also reduce

the tacit knowledge required for successful transfer. It is therefore plausible that the fall in transaction

cost due to science is greater for novel inventions than for incremental inventions. Formally, letting σ

represent novelty of invention, we assume that
∂2τ

∂σ∂s
≤ 0. Consider two inventions, i&j, and let σi > σj ,

so that i is more novel than j. The probability of no-trade (normalizing qi = qj = 1) is given by

1

1 + bm
,m = i, j, where bm =

N∑
k

exp(−xm+xmk−τ(σm, s). Evaluated at the point where the probability

of trade is the same, so that bj = bi = b, we have

∂Pi(no trade)

∂s
− ∂Pj(no trade)

∂s
=

b

(1 + b)2

(
∂τ(σi, s)

∂s
− ∂τ(σj , s)

∂s

)
≤ 0 (7)

Result 3 Reliance on science increases the probability of trade more for novel inventions than for incre-

mental inventions.12

12Buyer heterogeneity is related to gains from trade. Result 3 shows that transaction cost reductions are more important
when gains from trade are higher, pointing to the sense in which these are synergistic.
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2.4 Equilibrium: Specialization and division of innovative labor

We now relax the assumption that inventions are exogenously assigned, and analyze entry into invention.

The prospect of being able to trade an invention increases its value. We show that an increase in the

number of potential buyers would result in a higher share of inventions that rely on science.

Suppose the inventor captures a fraction λ of the surplus if the invention is traded. The expected

payoff from invention is Π = λ ln (exp(xi) +N(exp(x̄− τ(s))−R, where R is the investment required to

produce an invention.13 The marginal inventor, who is indifferent between inventing and not inventing,

is characterized by x∗(s) such that

Π(x∗(s)) = λ ln (exp(x∗) +N(exp(x̄− τ(s)))−R = 0 (8)

Equation 8 highlights the different ways in which reliance on science and MFT are related. First, as

Adam Smith noted, trade encourage specialization:
∂x∗

∂N
= − P (trade)

1− P (trade)
≤ 0. Second, the equilibrium

size of marginal inventor relying on science is smaller than of the marginal inventor not relying on science.

dΠ(x∗)

ds
= 0 =⇒ ∂x∗

∂s

∂τ

∂s
=

P (trade)

1− P (trade)
=⇒ ∂x∗

∂s
≤ 0 (9)

Third, reliance on science implies a direct increase in trade, as well indirectly because the marginal

inventor relying on science is smaller, i.e.,
dP (no trade)

ds
=

a

(1 + a)2

(
∂τ

∂s
+
∂x∗
∂s

)
≤ 0. The share of

science-based inventions is correlated with the number of potential buyers, creating a potential source of

bias. To see this, suppose that s is a binary variable, and the probability an invention uses science is

p, which is the same for all inventions. Further, suppose inventor types, x, are distributed uniformly on

the unit interval. The equilibrium entry condition (equation 8) implies that only inventions that satisfy

x > x∗(s) are realised. Let x1 = x∗(s = 1), x0 = x∗(s = 0). Equation 9 implies that x1 < x0. The

observed share of inventions, p̃, that use science is given by

p̃ =
p(1− x1)

p(1− x1) + (1− p)(1− x0))
> p ⇐⇒ x1 < x0. (10)

Equation 10 implies the observed share of science-based patents, p̃, is greater than p, the true share of

13For a proof, see Anderson et al. (1992), pages 60-61. For simplicity we assume that τi = τ(s) so that transaction costs
depend only the use of science but not on the identity of the inventor, and assume homogeneous buyers.
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science-based patents. The share of traded patents in equilibrium is

share traded =

∫ 1

x0

P(trade|x, s = 0)dx︸ ︷︷ ︸
α

+p

(∫ 1

x1

P(trade|x, s = 1)dx−
∫ 1

x0

P(trade|x, s = 0)dx

)
︸ ︷︷ ︸

β

(11)

Equation 11 highlights the empirical challenge in estimating the structural relationship between the

reliance on science and MFT, represented here by β, at the market level.14 We observe p̃ rather than

p. Unobserved factors, such as an increase in the number of potential buyers, N , will directly increase

the probability of trade, as well as increase p̃. This will bias the OLS estimate upward. Patent level

regressions may also not be free from bias if we imperfectly measure xi, the commercialization capability

of the inventor. Equation 9 implies that xi is negatively related to the reliance on science, and also, by

assumption, negatively related to the probability of trade.

To summarize, patent level estimations estimate the direct relationship (i.e., the reduction in trans-

action costs and increases in gains from trade), but not the indirect effects due to entry. Moreover, there

is potential upward bias if commercialization capability is measured inadequately. At the market (IPC)

level, estimates combine the direct and indirect (entry of specialized inventors), but there is potential

upward bias because the observed reliance on science is measured with bias.

We present estimates at both the patent and the IPC level. In addition, we develop a source of

exogenous variation in p at the IPC level to purge p̃ of the bias. Concretely, suppose that p = p(K), p′ > 0

where K is the stock of relevant science. That is, we assume that the share of science based inventions is

increasing in the stock of available science. As discussed below, we use changes in government support for

science that are unrelated to conditions in the market for technology, as a source of exogenous variation

in K, and therefore, in p. The identifying assumption is that these changes in the government funding

∆G, and the resulting changes in the stock of knowledge, ∆K, are orthogonal to N , the unobserved

number of potential buyers in the MFT.

3 Data

We combine data on patents and peer-reviewed scientific publications. Our patent data is from the

2016 publication of PatStat and encompasses around 5.2 million utility patents granted by the USPTO

14The structural relationship represented by β has both a direct component (represented by P(trade|x, s = 1) −
P(trade|x, s = 0), and an indirect component, represented by the differences between x1 and x0, as seen in the lower
limits of the integrals. The bias is related to the indirect component, because x1 = x0 =⇒ p̃ = p
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from 1980 to 2016. Patent reassignment (transaction date, identity of buyers and sellers) are from the

USPTO Patent Assignment Database (PAD) (Graham et al., 2018), which records details on the transfer

of ownership between patent assignees. To account for sample truncation, we limit our sample to patents

granted on or before 2011 (for which we observe reassignments until 2015).15 The final sample consists

of about 3.9 million patents, of which 6.3% are reassigned at least once. We describe next the main steps

taken to construct the sample and main variables.

Science-based inventions — We define science-based inventions as those that make at least one citation

to a scientific article (Narin et al., 1997; Arora et al., 2020; Roach and Cohen, 2013; Sampat, 2010). We

use data from Marx and Fuegi (2020), which matches US patents to scientific publications in Microsoft

Academic Graph (MAG) to identify pairs of citing patents and cited scientific publications (see appendix

A.1.1 for more details). We identify 724,395 patents out of 3,883,777 that cite at least one scientific

article in MAG on their front page.16 However, there could be still be measurement error. Science-based

patents may not cite science, and conversely, some citations to science may be “pro-forma”, not really

reflecting reliance on science. Accordingly, we also analyze market (patent class) level regressions because

aggregation should reduce classical measurement error: the share of science-citing patents in a patent

class is arguably a more reliable indicator of the extent to which inventions in that class rely on science.

Our results are robust to an alternative measures of reliance on science, in-text citations, and the textual

similarity between patents and scientific publications, as shown below.

Patent reassignments — We measure MFT by the patent reassignments in the USPTO Patent As-

signment Dataset (PAD) from 1980 to 2015 for patents granted on or before 2011 (Marco et al., 2015).17

The USPTO records transfers of ownership that occur between patent assignees. While the reporting

of transfers is voluntary, firms that acquire patents have an incentive to report transfers, particularly in

enforcing the acquired patents. We build on prior researchers, who have cleaned reassignments data to

obtain those related to MFT transactions (Marco et al., 2015; Serrano, 2010).18

Invention quality — We use three methods to measure the quality of the patented invention. First,

we use data from Patstat to count the the number of forward patent citations a patent has received and

normalize this by the average number of citations received by all patents in the focal patent’s publication

year. Our second measure is whether the patent is a triadic patent i.e., is registered in the three largest

15About 58% of reassignments are within five years after patent grant.
16See appendix A.1.1 for further details on variable construction.
17We focus on patent trade, which, unlike licensing, entail an exclusive transfer of property rights. Reliable large scale

licensing data are not easily available, particularly for private firms.
186.3% of our sample’s patents are reassigned at least once. See appendix A.1.2 for details on the cleaning procedure.
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patent jurisdictions - the European, Japanese, and U.S. patent offices (Dernis and Khan, 2004). That

the same invention is patented in all three offices implies that the value to the inventor is high. Third,

for firms listed in American stock exchanges, we use the stock market valuation of patents from Kogan

et al. (2017), which uses the excess stock returns for patenting firm on the date of the patent’s issuance

date recorded in the USPTO official gazette. In addition, we use the number of claims, and the length of

the first claim as other measures for the quality of the patent.

Invention novelty — We use two alternative measures of novelty. The first uses patent textual similarity

to prior patents. Building on Arora et al. (2018), for each focal invention, we calculate its textual similarity

score for all previous patents (all USPTO patents with an earlier priority date than the focal invention).

We normalize the proximity scores vector of the top 100 closest citation pairs for each focal patent by

dividing each score by the corresponding maximum pairwise textual score for the focal patent. We average

the standardized scores to derive a single textual proximity score for each focal invention.

The second measure of novelty is the technology combination familiarity measure from Fleming

(2001). We count the number of times the same combination of patent sub-classes had appeared before

the focal patent’s publication date. The assumption is that combinations of sub-classes that appear more

often should be more familiar.19

Size — We measure the commercialization capability of an inventor by its declared size in USPTO

maintenance fee payment records. Firms with less than 500 employees are classified as small, and pay

50% lower filing and maintenance fees. Second, we use initial patent assignee names matched to public

company names in Compustat from the DISCERN project (Arora et al., 2020), and use inclusion in

Compustat as another indicator of size.

Buyers’ heterogeneity — We measure buyer heterogeneity as the top four-assignee concentration ratio

by patent class-years. The higher the share of patents assigned to the top four patentees in a patent class,

the more unequal the distribution of valuations of inventions. We first extract the assignee names that

are disambiguated in the HBS inventor dataset (Lai et al., 2011).20 We then calculate a four-assignee

concentration ratio by dividing the patent stock of the four most frequent assignees by the patent stock

of all assignees in a 4-digit IPC-year.21

19In our sample, the combination familiarity score ranges from 0 (first combination of its kind) to 174 (appeared 174
times before) with a mean of 76.8. In the regression analysis, we refine this measure so that the count exponentially decays
with time at an annual rate of 18%. That is, a previous patent subclass combination from five years ago is weighted by
exp(− 1

5
) = 37%. This time decay allows for even old technological combinations to exhibit higher novelty if sufficient time

passes by between patenting activities.
20Available from https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/5F1RRI
21By constructing this measure, we implicitly assume that the assignees approximate the potential buyers in a technology

12

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/5F1RRI


Marginal inventor characteristics — In empirical analysis at the patent class level, we proxy the

capability of the marginal inventor by the average size of patent holders, the total number of unique

sellers, and the share of entrants to patenting in a 4 digit IPC-year. Average size of patent holders

is defined as patents granted to “small” assignees based on application and maintenance fee payment

divided by patent stock in each patent 4-digit IPC-year. To identify the number of unique sellers, we

cluster similar assignee names by using string distance measures. Assignee name pairs that are sufficiently

similar to each other are then treated as a single name.22 The share of new entrants is defined as the

number of entrants as a share of total assignees for a 4 digit IPC-year.

Table 1: Summary Statistics for Main Variables

Obs. Mean Std. Dev. 10% 50% 90%
Patent Publication Year 3883777 1998.886 8.725 1986 2000 2010
Reassignment Dummy 3883777 0.063 0.243 0 0 0
Cite Science Dummy 3883777 0.179 0.383 0 0 1
ln(IPC Combination Familiarity+1) 3878063 1.198 1.694 0 0 4
Textual Similarity 2425203 0.224 0.130 0 0 0
Small Entity Dummy 3689237 0.226 0.418 0 0 1
Compustat Patent Dummy 3883777 0.265 0.441 0 0 1

Notes: Reassignment is a binary variable equal to one if the patent has ever been reassigned in the
USPTO PAD dataset. Cite Science is equal to one if there has been a citation to Microsoft Academic
Graph (MAG), and zero otherwise. Combination Familiarity of a patent is constructed by counting the
number of times a patent’s IPC sub-class combinations have appeared in the past (details in Fleming
(2001)). Small Entity is equal to one if an assignee is classified as a small entity by section 41 of the
U.S. patent act, and zero otherwise. Compustat Patent is equal to one if an initial assignee is matched
to a Compustat firm, and zero otherwise.

4 Econometric framework

For a given patent, we confirm that reliance on science increases the probability of trade, especially

when the invention is novel, the inventor is small, and faces heterogeneous buyers. These relationships

hold as we aggregate up to the IPC level. In addition, we confirm that reliance on science is associated

with greater entry into invention, especially of small inventors. Finally, we develop sources of exogenous

variation in the reliance on science at the market level to estimate the structural relationship between

reliance on science and MFT.

market, and that 4-digit IPC classes are appropriate delineators of technology markets.
22This prevents misspellings or differences in legal nomenclature (Corp, Inc, Ltd etc.) from classifying a single assignee

into two different entities. To a limited extent, this strategy also allows us to identify and unify technology licensing arms or
divisions of companies, provided the name of the company is long enough. We define entrants as assignees that are patenting
for the first time since the beginning of our sample in 1980.
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4.1 Baseline trade equation (OLS)

We estimate a patent level equation for the likelihood a patent is traded :

Reassignmenti =β1si +Z′
iγ + ξt +ψc + υi (12)

Reassignment is equal to one for if the patent is reassigned at least once during its term and zero

otherwise.23 Reliance on science, si, is equal to one for patents with at least one NPL citation to MAG

and zero otherwise, and Zi contains a variety of controls for quality. As well, we include complete

set of dummies for the patent grant year (ξt) and its 4-digit IPC (ψc). υi is unobserved patent level

characteristics. We expect β̂1 > 0.

We examine Results 1, 2, and 3 and interact si with the inventor size, market concentration, and

invention novelty, respectively. Per Result 1, we expect the level relationship between size and patent

reassignment to be negative, as science increases the gains from trade more for small inventors than

large. Result 2 implies that the interaction term between reliance on science and market concentration

should be positive, while Result 3 implies that the interaction term between science and novelty should

be positive, as science reduces the higher transaction cost due to newness.

We argued that reliance on science can lower transfer costs as well as increase gains from trade. To

disentangle the relative importance of these two mechanisms, we use the characteristics of the science

being cited in our patents. For example, if transfer cost reduction (τi) is the sole mechanism, we may

expect patents building on older science to be more likely to trade. Mature and established theories and

empirical results are likely to have weathered more frequent and rigorous tests of validity (and attempts

at falsification). However, for gains from trade (x̄i − xi), we would expect patents using younger science

to trade more often. Patents building on “cutting edge” science have greater uncertainty relating to their

commercialization value.

We also explore whether patents that draw more specialized science are more likely to be traded

compared to patents that are more narrowly specialised. Jones (2009) has argued that scientific progress

has increased the returns to specialization, necessitating greater collaboration among such specialists.

Jones (2009) himself focused on collaboration in the production of knowledge. However, it is plausible

that the application of knowledge may also require collaboration. MFT is an important mechanism for

23A patent that is reassigned multiple times gets the same Reassignment value of one as a patent that has been reassigned
once.
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such vertical specialization and collaboration. In other words, inventions that draw upon specialized

science probably require more follow-on invention, and therefore, offer greater gains from trade.

4.1.1 Entry of small inventors

To see whether reliance on science favors small inventors, we estimate a specification at 4-digit IPC c,

publication year t level,

Share of Smallct =β0 + β1Share of Science Citing Patentsct +Z′
ctγ + ξt +ψc + υct (13)

We proxy the commercialization capability of the marginal seller by (i) the share of small patentees (ii)

the number of sellers and (iii) entrant share, and regress these against the share of science citing patents

out of all granted patents at the 4 digit IPC-year level. We control for the share of triadic patents, average

number of claims, and average length of the first claims because technological advances may encourage

the entry of new sellers. We also include IPC and year fixed effects to exclude the effect of any year or

technology class-specific differences.

4.2 Instrumental variable strategy and other robustness analyses

4.2.1 Measurement error

It is plausible that we measure the reliance on science with error. We directly probe the robustness of

our measure in three ways. First, we add a dummy for whether the citations to the scientific article also

appears in the body text of the patent, in addition to the front page NPL section. Second, we weight

the front page citations to science by the number of forward citations received from MAG articles by the

cited science. Third, we calculate a measure of textual similarity between focal patent text to scientific

articles published in the Web of Science, using data from Arora et al. (2018).

4.2.2 Unobserved heterogeneity and instrument variable analysis

The association between reliance on science and MFT may also reflect other factors. Equation 11 showed

that unobserved differences in the demand for inventions, N , would result in a spurious correlation

between p̃, the observed share of science citing patents, and the share of patents that are traded.24 To

24At the patent level as well, equation 9 implies that unobserved variation in commercialization capability is likely
correlated with reliance on science, potentially creating biased estimates.
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address this concern, we exploit a quasi-experiment where the cost of relying on science falls due to an

exogenous rise in the relevant knowledge for some inventions, but not others. Specifically, we use the

reallocation of federal funding for R&D around the end of the Cold War as a source of exogenous change

in the availability of relevant scientific knowledge. We use the changes in the predicted stock of scientific

knowledge as an instrument for the share of patents citing science to purge the effect of unobserved

demand factors, as well as purge it of measurement error. This procedure allows us to estimate the

causal effect of science on MFT.

Figure 1: Timing Structure of Instrumental Variable Estimation
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Government funding for R&D accounted for close to half of all research and development in the

United States between 1980 and 1995 (see figure 2). Merrill (2018) shows that the end of the Cold

War has resulted in a significant reallocation of the federal government’s research portfolio, both within

and between agencies. Between agencies, the dominant position of the Department of Defense (DoD)

yielded to increased support for the Department of Health and Human Services. Within DoD, funding

shifted out of physics, chemistry, and electrical engineering into computer sciences, oceanography, and

biology during the 1990s. In a dataset of federal contract R&D data collected from USAspending.gov, we

find that annual obligations of the U.S. government to contractors has decreased for defense and space

technology, while increasing for medical and energy related items around the years after the end of the

Cold War (see figure 2).25An increase in public funding for a scientific discipline increases the stock of

knowledge, and hence increases the share of inventions relying on the focal science (Azoulay et al., 2019;

Fleming et al., 2019; Moretti et al., 2019).

Our instrument is defined at the 4-digit IPC level and measure the i) the predicted number of

relevant scientific papers to a 4-digit IPC and ii) the difference in average federal R&D funding between

25Appendix table A2 in section A.2 summarizes this resource reallocation
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Figure 2: Government Contract R&D Funding, During and After the Cold War
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Notes: This figure plots the aggregate value of the contracts signed by the federal government for research and de-
velopment, separated by main 2-digit Product and Services Codes: Energy (AG), Medical (AN), Space (AR), Defense
(AC&AD). Figures are adjusted to 2012 dollars using GDP deflators from Louis Johnston and Samuel H. Williamson,
“What Was the U.S. GDP Then?” MeasuringWorth, 2020.

the post (1990-1992) and pre (1986-88) periods. Our first instrument is created in three steps. First, we

create estimates of the stock of scientific knowledge (number of papers) relevant for each 4 digit IPC,

using the share of NPL citations to different scientific disciplines by patents in an IPC. Second, we run

an OLS regression at the Web of Science Field-year level to predict the number of papers published in a

given field and year between 1992 and 2000. Third, we weight the predicted stock of knowledge due to

the shocks to federal R&D funding in each scientific discipline by its relevance to a focal IPC to create

the predicted shock to scientific knowledge for each IPC due to the end of the Cold War.26

We implement our IV estimation with two-stage-least-squares. In the first stage, we predict the

share of science-citing patents in a 4-digit IPC-year using our instrument, predicted relevant science. In

the second stage, we estimate the share of traded patents as a function of the predicted share of science-

citing patents. The first stage of this IV specification confirms that the reliance on science is a function

of available knowledge stock, which we have shown in column 1 of table 9 to be positively related to post

Cold War federal R&D funding shocks. The first stage regressions in table 9 shows that the relevant F

statistics are over 100. Thus, changes in federal procurement spending due to the fall of the Soviet Union

26Please see appendix section A.2.2 for details.
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had an appreciable effect on the stock of scientific knowledge relevant to invention as well as on the share

of patents relying on science.27

An alternate instrument is simply the difference in average government funding relevant to IPCs. For

each fiscal year, we calculate the average federal R&D contract obligations for each Product and Services

Code (PSC)28 and match it to 4-digit IPCs based on the share of patents filed in each IPC by DISCERN

firms contracting in the focal PSC, between 1980 and 1992.29 We average these R&D dollars “relevant”

to each 4-digit IPC, before (1986-88) and after (1990-92) the end of the Cold War. The difference of the

natural logs of these values is our instrument that is used to predict the share of science-citing patents

at the 4-digit IPC-year level after the Cold War (1992-2000).

A potential concern is that the end of the Cold War also changed demand conditions across technol-

ogy fields. The federal government spent on average $315 billion a year on procurement between 1986 and

1992, where R&D contracts average $34.9 billion, accounting for 11% of total procurement. Specifically,

non-R&D spending cuts may reduce demand in select fields, and thereby reduce the rate of invention

in the field, possibly affect the share of science-based inventions as well as trade in technology. That is,

changes in government procurement spending may also have affected N , the number of potential buyers

of inventions (Lichtenberg, 1987).

We address this concern in three ways. First, the correlation between spending differences for R&D

and non-R&D is positive but relatively low (r=0.257).30 For instance, patent class “C07H” (SUGARS;

DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS) experiences a four-

fold increase in its R&D funding between 1986 and 1992, while only a 3% decrease is observed for

non-R&D funding. Pharmaceutical firms that receive medical research contracts also sell drugs (PSC

6505) and medical equipment (6515) to the federal government, which tends to be stickier (e.g. in VA

medical centers). Second, we directly control for non-R&D federal contract spending. Third, we add

robustness checks in appendix table A3 that derives funding shocks net of number of patents, share of

reassigned patents and patent forward citations.

27We allocate federal R&D funding to 198 Web of Science Fields by weighting the number of MAG publications matched
to contracting DISCERN firms in each PSC. We then regress the number of scientific publications with at least one author
affiliation in the United States against the difference in logged funding for each Web of Science field between the pre (1986
to 1988) and post (1990 to 1992) period. Please see appendix A.2 for further details. In unreported robustness checks we
verify that the results are unchanged when we weight the number of papers with forward citations received by the papers
within five years of their publication..

28“The Product and Service Codes (PSC) Manual provides codes to describe products, services, and research and develop-
ment (R&D) purchased by the federal government. These codes indicate “what” was bought for each contract action reported
in the Federal Procurement Data System (FPDS).” 2015 Edition of the Federal Procurement Data System’s Product and Ser-
vice Codes Manual (Available from https://www.fpds.gov/downloads/top_requests/PSC_Manual_FY2016_Oct1_2015.pdf)

29Please see appendix section A.2.2 for details on the crosswalk.
30See figure A3 for a visual comparison
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5 Estimation results

5.1 Reliance on science and trade

Table 2 contrasts the reassignment probability of patents that cite science and those that do not. We

find that science-based patents are 1.4% (or 22% relative to the sample mean) more likely to be traded

than those that are not based in science. In section 2, we argued that science leads to more trade because

of its ability to reduce transfer costs (τi) and affect the gains from trade (xi − xik). However, it is also

possible that science-based inventions have higher quality (qi). Indeed, table 2 shows that patents citing

science have higher forward patent citations, are likely to be triadic patents, and have more claims and

higher stock market values. Consistent with our model, reassigned patents also tend to exhibit higher

values of these proxies of quality compared to those not reassigned.

Table 2: Mean Comparisons of Patent Characteristics, by Science and Reassignment
Status

T-Test Cite Science = 0 Cite Science = 1

Diff. Std. Error Count Mean SD Count Mean SD
Reassignment (%) 1.3879∗∗∗ 0.0316 3159382 6.023 23.791 724395 7.411 26.195
5-year Forward Patent Citations 3.4266∗∗∗ 0.0140 3159382 5.455 9.328 724395 8.882 15.512
Triadic Patent 0.1832∗∗∗ 0.0006 3159382 0.270 0.444 724395 0.453 0.498
Number of Claims 4.7358∗∗∗ 0.0164 3158923 14.454 11.470 724387 19.190 16.503
Stock Market Value of Patent (KPSS) 5.7256∗∗∗ 0.0827 945391 11.332 35.157 272502 17.057 46.715

T-Test Reassignment = 0 Reassignment = 1

Diff. Std. Error Count Mean SD Count Mean SD
5-year Forward Patent Citations 2.5321∗∗∗ 0.0226 3639800 5.935 10.422 243977 8.467 15.592
Triadic Patent 0.0465∗∗∗ 0.0010 3639800 0.301 0.459 243977 0.348 0.476
Number of Claims 2.3334∗∗∗ 0.0265 3639335 15.191 12.497 243975 17.524 15.217
Stock Market Value of Patent (KPSS) -1.5637∗∗∗ 0.1576 1156249 12.692 38.362 61644 11.128 33.312

Notes: Comparison of means at the patent level. Standard errors are in parentheses. Significance levels are annotated as
∗ < 10% ∗∗ < 5% ∗∗∗ < 1%

5.2 Baseline trade equation

Table 3 presents the Linear Probability Model (LPM) estimates. Controlling for year and 4-digit IPC

fixed effects, column 1 shows that citing a scientific article is associated with a 23% higher probability

of a patent being traded, relative to the sample mean.31 Patents that cite science may represent higher

quality inventions and better crafted patents. We therefore control for triadic patent status, number of

claims, and the length of the first claim. More independent claims and shorter independent claims are

related to broader patent scope (Kuhn and Thompson, 2019). In addition we measure whether a patent

31Unless stated otherwise, the percentage magnitudes reported here are relative to the sample mean in each specification.
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has been filed in multiple patent jurisdictions (U.S., Europe, and Japan). Such triadic patents tend to

be of high private value, and hence, tend to be of higher quality.32 Column 2 shows that number of

claims and triadic patenting status are positively correlated with patent trade. The coefficient on science

citation decreases in magnitude by 28%, but remains positive and statistically significant. For a subset

of patents that are issued to U.S. listed firms, we measure their market valuations based on excess stock

price returns of inventing firms on their grant dates (Kogan et al., 2017). Citing science continues to have

a positive and statistically significant relationship with reassignment.33

Splitting the sample by technology classes (Columns 4-7, Table 3), we find that the Cite Science

Dummy coefficient in the Life Sciences is over three times as large as in ICT. Value chains in the ICT

sector tends to be more complex, possibly muting the gains from having a clearer scientific grounding for

one invention. The life sciences, in contrast, have clearly delineated targets and therapeutic areas that

are tackled by clearly structured molecular compounds. Therefore, transfer cost reduction from clarifying

32In columns 2 and 3 of appendix table B2, we also add dummies for quintiles and deciles of five-year forward patent
citations. More highly cited patents are traded more, but the positive relationship between reassignment and science citation
remains significant.

33Interestingly, the relationship between stock market valuations and patent trade is negative, perhaps because this
captures the value idiosyncratic to a firm (xi in the model) rather than common quality (qi).
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the underlying mechanisms by referencing science in an invention may be larger for the life sciences.

Table 3: Markets for Technology and Reliance on Science (OLS)

Baseline Science By Technological Sector

(1) (2) (3) (4) (5) (6) (7)

Dependent variable: Reassignment = 1

Baseline Quality Controls Compustat Sample Life Sci Chem ICT Other
Cite Science Dummy 1.424** 1.026** 0.360** 1.134** 0.831** 0.869** 1.019**

(0.038) (0.038) (0.128) (0.122) (0.092) (0.058) (0.083)
Triadic Patent Dummy 0.914** 0.532** 2.493** 0.306** 1.226** 0.559**

(0.029) (0.158) (0.100) (0.077) (0.058) (0.045)
Number of Claims 0.082** 0.020** 0.081** 0.067** 0.067** 0.096**

(0.001) (0.004) (0.004) (0.003) (0.002) (0.002)
Length of First Claim -0.000** 0.000 -0.000** -0.000 -0.000 -0.000**

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Mkt Value of Patent (KPSS) -0.002

(0.001)
Avg of DV 6.283 6.283 5.589 8.680 6.564 5.678 6.295
4-digit IPC Fixed Effects Yes Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes
Firm Fixed Effects No No Yes No No No No
R2 0.010 0.012 0.156 0.010 0.009 0.014 0.010
N 3,883,776 3,882,632 797,912 357,124 473,782 1,020,997 1,704,044

Notes: Unit of analysis is the patent. Patent reassignment is a binary variable equal to 100 if the patent has ever been reassigned in
the USPTO PAD dataset and zero otherwise. Cite Science Dummy is one if there has been a citation to Microsoft Academic Graph
(MAG), and zero otherwise. Triadic Patent Dummy is one if the patent shares a prior art in the USPTO, EPO, and JPO, and zero
otherwise. Number of Claims counts the number of independent and dependent claims in a patent. Length of First Claim counts the
number of words in the first claim of the patent. Mkt Value of Patent (KPSS) is the value of a patent (in million dollars) based on the
cumulative abnormal returns in the firm’s market value at the issuance event of the patent Kogan et al. (2017). Standard errors are
robust to arbitrary heteroscedasticity for all columns except for column 3, whose standard errors are clustered at the Compustat firm
level.

5.2.1 Measurement error and validation

We introduce three robustness checks per section 4.2.1. We include “in-text” citations to MAG publica-

tions that appear in the body text of the patent. In-text citations do not affect the patentability of an

invention as much as front page NPL citations. Therefore, their inclusion may signal a greater reliance

on science by the inventor. We find in column 1 of table 4 that in-text citations to science are positively

correlated with patent trade.
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Table 4: Markets for Technology and Reliance on Sci-
ence, Alternative Measures (OLS)

DV: Reassignment=1

(1) (2) (3)
Cite Science Dummy: In-text 0.878**

(0.044)
ln(Cite Science: FwdCitation Weighted) 0.162**

(0.006)
Textual Similarity to Science 0.114**

(0.007)
Triadic Patent Dummy 0.945** 0.913** 0.974**

(0.028) (0.029) (0.029)
Number of Claims 0.083** 0.082** 0.084**

(0.001) (0.001) (0.001)
Length of First Claim -0.000** -0.000** -0.000**

(0.000) (0.000) (0.000)
Avg of DV 6.283 6.283 6.283
4-digit IPC Fixed Effects Yes Yes Yes
Year Fixed Effects Yes Yes Yes
R2 0.012 0.012 0.012
N 3,882,632 3,882,632 3,882,632

Notes: Unit of analysis is at the patent level. “Cite Science Dummy: In-text” is
equal to one when a scientific article is cited in the body of the patent text as an in-
text citation. “ln(Cite Science: FwdCitation Weighted)” takes the natural log of
the total number of citations papers cited by a patent receive from other scientific
papers in Microsoft Academic Graph. “Textual Similarity to Science” measure
the textual overlap of a patent’s text with abstracts of articles in Clarivate Web
of Science’s Science Citation Index - Expanded. All other variables definitions are
identical to table 3. Standard errors are robust to arbitrary heteroscedasticity.

On the other hand, the science surrounding an invention may be too established or canonical such

that too few citations are made. For example, GPS technology relies on Einstein’s general theory of

relativity for its time dilation corrections between satellites and ground receivers, but few GPS patents

cite his papers. We therefore weight the science citation dummy by the quality of the cited science in

column 2 of table 4 and find that patent reassignment is still positively correlated with the number of

citations a cited paper receives from other papers within MAG. We also measure citations to science that

are linked through another patent citation (Jones, 2009). The distance to the “citation frontier” is zero

for patent with a citation to MAG (D = 0), while a patent that cites such a patent has a distance of one

(D = 1). We calculate this distance up to 10 citation links and find, as shown in appendix table B1 that

the positive association between citing science and patent reassignment persists. In appendix table B1,

we find that the estimated coefficient of science citation increases from 1.026 when a patent cites science

directly to 1.190, when a patent cites a patent that cites science once removed from the citation frontier

(D = 1). The coefficient decreases as the distance from the citation frontier increases.

We offer three additional validity checks of our citation-based measure of reliance on science. First,

Arora et al. (2020) show that patents that cite scientific publications are more likely to respond in the
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Carnegie Mellon Survey that public research findings (from government and academia) are important

for their inventions. They also find that firms tend to recognize the importance of the field they cite in

their patents. Firms that cite scientific articles in patents also tend to operate a greater basic scientific

research program as a share of total R&D.

Table 5: Reliance on Science, for Inductees of the National Inventors Hall of Fame

Group Variable Obs. Mean Std. Dev. 10% 50% 90%

Patents by National Inventor Hall of Fame
(NIHF) Inductees

Cite Science Dummy 97 0.567 0.498 0 1 1

Textual Simil. to Science 97 4.634 2.002 1.609 4.875 6.978

also Nobel Laureate Cite Science Dummy 8 0.750 0.463 0 1 1
Textual Simil. to Science 8 6.539 1.473 3.871 6.228 8.388

also Lasker Laureate Cite Science Dummy 1 1 . 1 1 1
Textual Simil. to Science 1 9.183 . 9.183 9.183 9.183

also Turing Laureate Cite Science Dummy 4 1 0 1 1 1
Textual Simil. to Science 4 4.292 2.126 1.386 4.718 6.347

also Franklin Institute Award Laureate Cite Science Dummy 11 0.636 0.505 0 1 1
Textual Simil. to Science 11 5.546 1.656 3.526 6.054 7.309

also NMTI Laureate Cite Science Dummy 18 0.556 0.511 0 1 1
Textual Simil. to Science 18 4.482 2.244 0.693 5.454 6.347

non-NIHF Patents Cite Science Dummy 3,883,680 0.179 0.383 0 0 1
Textual Simil. to Science 3,883,680 3.541 2.037 0.693 3.555 6.213

Notes: This table shows summary statistics on reliance on science for patents published between 1980 and 2011 that are also matched to
inductees of the National Inventors Hall of Fame (NIHF). Nobel Laureates include those in physics, physiology or medicine, and chemistry
only. The NMTI refers to the National Medal of Technology and Innovation. Cite Science Dummy is equal to one if the patent cites at least
one scientific article from MAG. Textual Similarity to Science is a continuous measure of textual overlap between a patent and scientific
articles from Clarivate Web of Science between 1990 and 2015.

Second, we focus on a subset of patents whose inventors were inducted to the National Inventor

Hall of Fame (NIHF) and examine whether high-caliber inventors that are also scientists are more likely

to cite science, compared to similarly high-caliber inventors. The NIHF inductees are recognized for

“great technological advances that make human, social and economic progress possible,” which may

range from Post-it Notes to blue LEDs.34 The NIHF lists descriptions of the nature of the invention and

the contribution of the inductee, together with the USPTO patent number for the most representative

invention of that inductee.35 We are able to link 97 patents for 111 inductees for our sample period.36

We manually searched for whether each inductee had been awarded any one of four prestigious awards

in science: the Nobel Awards in physics, medicine, and chemistry, the Lasker Award (for medicine), the

Turing Award (for Computer Science), and the Franklin Institute Award (Arts et al., 2020). We find that

57% of the patents by NIHF inductees cite science, which is more than three times the sample average.

34Spencer Silver, Patent Number: US3691140A, and Shuji Nakamura, Patent Number: US5290393A.
35https://www.invent.org/NIHF-hall-of-fame-inductees-list-alphabetical
36While the inventions are patented between 1980 and 2011 to fit with our sample, inventor years of birth range between

1914 and 1975.
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However, we find that this probability increases to 75% for patents by Nobel Laureates, while Lasker and

Turing Award winners always cite science in their most representative patents listed by the NIHF. We

also link these inductees to the winners of National Medals of Technology and Innovation (which does

not specifically require a scientific contribution) and find that they cite science slightly less often (56%).

Third, we calculate an alternative measure of reliance on science based on the textual overlap of

patent text with abstracts from scientific articles. We leverage data from Arora et al. (2018), which

calculates a weighted cosine similarity measure between the full text of patents in our sample and the

abstracts of scientific articles in Clarivate Web of Science’s Science Citation Index - Expanded. Using

this textual overlap measure between patent-paper pairs, we keep the top 100 patents most similar to the

focal paper. We count the number of times a given patent is classified within this “top 100” set, which

we use as an alternative measure for reliance on science. We also tried the patent level averages of the

ranks, as well as the similarity scores with respect to scientific publications. We replicate the baseline

results using this new measure in column 3 of table 4, finding that a standard deviation increase in textual

similarity to science is associated with a 3.7% greater reassignment probability.
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Table 6: Science and MFT, by Seller Size, Buyer Heterogeneity, and Patent Novelty (OLS)

Seller Size Buyer Hetero Patent Novelty Science Characteristics

(1) (2) (3) (4) (5) (6) (7)

Dependent variable: Reassignment = 1

Maint.Fee Compustat C4 Share ABCL Fleming Recency Specialization
Cite Science Dummy 0.605** -0.410** 0.900** 1.557** 1.314**

(0.040) (0.053) (0.064) (0.080) (0.046)
Avg(Lag to Cited Science) -0.021**

(0.004)
1-Normalized Field Counts 0.795**

(0.102)
Small Entity Dummy 0.040

(0.041)
Small Entity Dummy × Cite Science Dummy 2.531**

(0.101)
Non Compustat Dummy 0.769**

(0.033)
Non Compustat Dummy × Cite Science Dummy 2.374**

(0.069)
C4 Share 0.010

(0.203)
C4 Share × Cite Science Dummy 1.848**

(0.499)
Textual Similarity -2.001**

(0.133)
Textual Similarity × Cite Science Dummy -1.845**

(0.258)
ln(IPC Combination Familiarity+1) 0.065**

(0.008)
ln(IPC Combination Familiarity+1) × Cite Science Dummy -0.225**

(0.018)
Triadic Patent Dummy 0.996** 0.899** 1.016** 1.166** 0.933** 1.823** 1.794**

(0.030) (0.029) (0.033) (0.034) (0.030) (0.062) (0.062)
Number of Claims 0.081** 0.085** 0.094** 0.055** 0.082** 0.060** 0.059**

(0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002)
Length of First Claim -0.000** -0.000** -0.000** -0.000** -0.000** -0.000* -0.000*

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Avg of DV 6.265 6.283 6.938 4.877 6.274 7.401 7.420
4-digit IPC Fixed Effects Yes Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes

R2 0.012 0.012 0.012 0.011 0.012 0.015 0.015
N 3,689,008 3,882,632 3,287,801 2,424,715 3,877,819 830,868 830,868

Notes: Unit of analysis is at patent level. Textual Similarity averages the patent-to-patent pairwise text similarity scores from Arora et al. (2018) for each focal patent,
normalized by its maximum score. Combination Familiarity of a patent is constructed by counting the number of times a patent’s IPC sub-class combinations have
appeared in the past (details in Fleming (2001)). Small Entity is equal to one if an assignee is classified as a small entity by section 41 of the U.S. patent act, and
zero otherwise. Non Compustat is equal to one if an initial assignee is not matched to a Compustat firm, and zero otherwise. Avg(Lag to Cited Science) is defined as
the average difference in the grant year of a patent and the publication year of a cited scientific article. The rest of the variable definitions are identical as table 3.
Standard errors are robust to arbitrary heteroscedasticity.

5.2.2 Inventor commercialization capability

We investigate the empirical support for Result 1 that patents owned by smaller firms are more likely

to be traded, especially for patents that cite science. We measure seller commercialization capability

(xi) through patent ownership by “small” firms recorded in USPTO maintenance fee payments, and by

Compustat companies. We expect that smaller patentees are more likely to sell their invention than larger

ones, and the association is stronger for patents that cite science. Table 6 column 1 shows that small firm

patents that cite science are 50% (= 3.13%
6.28%) more likely to be sold, compared to small firm patents not

citing science.37 Column 2 shows that patents owned by non-Compustat owners are on average 0.05%

more likely to be sold relative to Compustat patents, but the gap for patents citing science is larger by

two orders of magnitude. We replicate this result using textual similarity measures to science in columns

37In unreported checks, we confirm that the level effect of regressing patent reassignment against small
Small Entity Dummy without interactions with Cite Science Dummy in column 1 is positive and significant.
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1 and 2 of table 7. The predicted reassignment gap between small and large firms is around 5 times larger

for patents in the 75th percentile of similarity scores (4.997) compared those in the in the 25th percentile

(2.079). The gap between non-Compustat and Compustat firms is around 48% larger for 75th percentile

similarity scores compared to 25th percentile.

5.2.3 Buyer heterogeneity

Result 2 predicts that industries with more heterogeneous buyers will exhibit more trade, and reliance

on science magnifies the gap. We measure industry concentration by the share of C4 patentee-owned

patents in a focal patent’s 4-digit IPC. Because C4 patentees are likely to be large entities, simply

regressing reassignment against the share of C4 patentees will measure the effects of patentee size rather

than buyer heterogeneity. Therefore, we limit our sample to patents owned by non-C4 patentees. Column

3 of table 6 tests these predictions. For non-C4 patentees, being in a concentrated market where 90% of

all patentees are C4 patentees leads to a 4% gain in reassignment probability compared to one where only

10% of all patentees are C4 patentees. However, patents that cite science in those concentrated markets

are 38% more likely to be traded than those that do not cite science. We also replicate these findings in

column 3 of table 7 replacing citations to science with textual similarity to science.

5.2.4 Invention novelty

Recall that more novel inventions may have higher gains from trade but also higher transaction costs,

implying that the relationship between novelty and trade is theoretically ambiguous. Result 3 implies,

however, that novel patents that rely on science have a higher probability of trade than novel patents

that do not cite science. We test Result 3 by interacting science with two measures of invention novelty:

textual similarity to prior patent art (Arora et al., 2018) and patent subclass Combination Familiarity

(Fleming, 2001). The interaction terms in columns 4 and 5 of table 6 are negative and statistically

significant, consistent with our prediction. Patents whose subclass combinations are in the first decile of

Combination Familiarity scores (in other words, novel patents) are 14% less likely to be traded compared

to those in the tenth decile (not novel patents). However, novel patents that are based in science are

21% more likely to be traded than novel patents not based in science, whereas the same difference for not

novel patents is 7%: the effect of science on reassignment is close to three times larger in novel patents.38

38We confirm in unreported robustness checks that similar results hold with other text-based patent similarity measures
(Kuhn, 2016).
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Table 7: Textual similarity to science and MFT, by seller size, buyer heterogeneity, and
patent novelty (OLS)

Seller Size Buyer Hetero Patent Novelty

(1) (2) (3) (4) (5)

Dependent variable: Reassignment = 1

Maint.Fee Compustat C4 Share ABCL Fleming
Textual Similarity to Science 0.074** -0.092** 0.088** 0.149** 0.160**

(0.007) (0.012) (0.011) (0.014) (0.008)
Small Entity Dummy -0.296**

(0.066)
Small Entity Dummy × Textual Similarity to Science 0.217**

(0.015)
Non Compustat Dummy 0.170**

(0.059)
Non Compustat Dummy × Textual Similarity to Science 0.294**

(0.014)
C4 Share -0.494

(0.301)
C4 Share × Textual Similarity to Science 0.206**

(0.073)
Textual Similarity -2.168**

(0.209)
Textual Similarity × Textual Similarity to Science -0.057

(0.050)
ln(IPC Combination Familiarity+1) 0.149**

(0.013)
ln(IPC Combination Familiarity+1) × Textual Similarity to Science -0.038**

(0.003)
Triadic Patent Dummy 1.056** 0.968** 1.079** 1.244** 0.990**

(0.030) (0.029) (0.033) (0.034) (0.029)
Number of Claims 0.083** 0.087** 0.096** 0.057** 0.084**

(0.001) (0.001) (0.001) (0.001) (0.001)
Length of First Claim -0.000** -0.000** -0.000** -0.000** -0.000**

(0.000) (0.000) (0.000) (0.000) (0.000)
Avg of DV 6.265 6.283 6.938 4.877 6.274
4-digit IPC Fixed Effects Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes
R2 0.012 0.012 0.011 0.011 0.012
N 3,689,008 3,882,632 3,287,801 2,424,715 3,877,819

Notes: Unit of analysis is at patent level. Textual Similarity to Science takes one plus the natural log of the number of times a patent is
classified as one of 100 closest patents to a scientific article in Clarivate Web of Science’s Science Citation Index-Expanded. The rest of the
variable definitions are identical to those in table 6.

5.2.5 Cited science recency and specialization

The empirical results thus far indicate that reliance on science is associated with greater trade, even after

controlling for the quality of the patented invention. This suggests that reliance on science may also lower

transfer costs and increase gains from trade. Patents using recent science may be more likely to trade if

gains from trade are at work, but if patents citing older, “textbook”, science are more likely to be traded,

then reductions in transfer costs may be at work. Column 6 of table 6 tests these predictions on 830,868

patents that cite at least one scientific article in MAG and finds that patents citing more recent science
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are more likely to be traded. A one standard deviation decrease in the average citation lag (7.7 years)

is associated with about a 2% higher trade probability relative to the sample mean. Column 7 explores

whether patents drawing on specialized science are more likely to be traded. We measure specialization

by one minus the number of Web of Science fields found in the NPL citations of a patent divided by

the number of papers cited. We find that a patent citing a standard deviation increase in specialization

(.320) is associated with a 3.4% higher probability of trade relative to the sample mean. This supports

the view that science increases gains from trade.39

In short, our results strongly suggest that the science-MFT relationship is not simply a consequence

of unobserved differences in the quality of the patented invention. Our evidence indicates that the science-

MFT relationship is stronger for inventions that are based in newer and more novel science, and for more

novel inventions. Since transaction costs are likely higher for such inventions, these findings suggest that

science based inventions also have higher potential gains from trade. Put differently, the science-MFT

relationship is multifaceted, with science potentially reducing transaction costs as well as enhancing gains

from trade.

5.3 Entry and market structure (OLS)

We turn to examining IPC level results. From Equation 9 we expect the commercialization capability of

the marginal seller (inventor) to decrease as the use of science in an IPC-year increases. Table 8 presents

the estimation results. We find that IPC-years that have a higher share of patents citing science tend to

have a higher share of “small” patentees (column 1), larger number of sellers (column 3), and more first-

time patentees (column 5).40 Our estimates imply that a one standard deviation increase in science-citing

patent share from the sample mean translates to a 18% gain in the share of small entities. A similar gain

is observed for number of sellers: there are 0.068 sellers per patent on average, but a standard deviation

higher citations to sciene have 0.077 sellers per patent. The share of entrants predicted for IPC-years in

the 10th percentile of science-citing patent share is 28%, while it is 32% for patents in the 90th percentile.

39In appendix table B3, we redefine the citing patent-cited paper pair to be between a citing patent and a cited paper’s
cited paper. In the language of Ahmadpoor and Jones (2017), the results in table 6 use characteristics of “1st degree”
connections between patent and paper, while the results in table B3 use those for “2nd degree” connections, reaching into
deeper connections into the scientific literature. We find that the magnitude of the coefficients are smaller, but the direction
and significance of the results hold.

40Patentees that are patenting for the first time since 1980, divided by number of patents. We exclude the first five years
of our panel (1980-1985) to mitigate concern that the early years of the panel will have more entrants.
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Table 8: Science, MFT, and entry into invention

Dependent Variable: Small Entity Share No. of Sellers Entrant Share

(1) (2) (3) (4) (5) (6)
Baseline Novelty Baseline Novelty Baseline Novelty

Avg(Cite Science Dummy) 0.315** 0.320** 0.057** 0.048** 0.134** 0.121**
(0.034) (0.033) (0.010) (0.011) (0.023) (0.023)

log(Avg(MAG Combination Familiarity)+1) -0.003** -0.000 -0.002*
(0.001) (0.000) (0.001)

Avg(Triadic Patent Dummy) -0.367** -0.332** -0.006 -0.009 -0.081** -0.075**
(0.031) (0.032) (0.008) (0.008) (0.021) (0.020)

Avg(Number of Claims) -0.004** -0.004** 0.002** 0.001** -0.002* -0.002*
(0.002) (0.002) (0.000) (0.000) (0.001) (0.001)

Avg(Length of First Claim) 0.000 0.000 -0.000 0.000 0.000* 0.000**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

log(Number of Patents+ 1) -0.026** -0.024** -0.008** -0.008** 0.006 0.006
(0.005) (0.004) (0.002) (0.002) (0.004) (0.003)

Avg of DV 0.281 0.260 0.068 0.260 0.291 0.279
IPCs 334 327 337 327 328 327
Years 31 31 32 31 26 31
R2 0.928 0.928 0.559 0.576 0.939 0.945
N 6,913 6,290 7,173 6,493 5,899 5,563

Notes: Unit of analysis is at the 4 digit IPC-year level. Observations with fewer than 100 patents are dropped. Avg Cites to
Science is the count of patents in a 4 digit IPC-year that have made a citations to science. Small entity share is the number of
small entity (<500 employee) patents. Number of sellers equals the number of unique patent sellers that have been identified
for each 4 digit IPC-year. Entrant Share is calculated by dividing the number of new assignees (entrants) by the total number
of assignees in each 4 digit IPC-year. The first five years of the panel are excluded for columns 5 and 6. All columns include
fixed effects for 4-digit IPC and patent publication years. Standard errors are clustered at the 4-digit IPC level.

We expect less mature science to be more strongly associated with inventor entry if it affects gains from

trade and more mature science if it affects transfer costs. In columns 2, 4 and 6, we include the average

of the Scientific Combination Familiarity score calculated at the patent level for each IPC-year. We

find that patent classes that are populated by inventions that use more novel (less familiar) scientific

combinations are more likely to have smaller entities, more sellers and entrants. This supports the idea

that the entrants to scientific invention are capitalizing on gains from trade to sell their inventions.

5.4 Instrumental variable estimation

Our results that science-based inventions have higher rates of trade, especially for novel inventions, smaller

inventors, and heterogeneous markets, is consistent with the view that science lowers knowledge transfer

costs and increases gains from trade. This relationship can be confounded by unobserved factors. For

instance, an increase in the (unobserved) number of potential buyers would imply an increase in the

observed reliance on science. In this section, we obtain causal estimates of the effect of reliance on science

on MFT by instrumenting the use of science by changes in U.S. federal contract R&D caused by the end

of the Cold War. In the first stage, we predict the share of patents citing science in an IPC-year using
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changes in federal contract R&D around the end of the Cold War. The predicted values are used in the

second stage.

Table 9: Post Cold War Federal R&D Shifts and MFT (IV Estimates)

(1) (2) (3) (4) (5) (6)

OLS OLS 1st Stage IV 2nd Stage IV 1st Stage IV 2nd Stage IV

Dependent Variable: ln(Papers)
ln(Share of
Reassigned
Patents)

ln(Avg
Cites to
Science)

ln(Share of
Reassigned
Patents)

ln(Avg
Cites to
Science)

ln(Share of
Reassigned

Patents

∆ ln(Gov. R&D Contracting) (WOS Field) 1.257**
(0.019)

ln(Gov. R&D Contracting (Pre, $1Bn)) (WOS Field) 0.364**
(0.003)

ln(Avg Cites to Science) 1.040** 0.905** 0.666**
(0.056) (0.145) (0.105)

Number of Papers (Predicted, 1000s) 0.079**
(0.003)

∆ ln(Gov. R&D Contracting) 0.175**
(0.002)

ln(Gov. R&D Contracting (Pre, $1Bn)) -0.476** -0.007 -0.478** 0.081** -0.481**
(0.086) (0.028) (0.106) (0.016) (0.081)

ln(Gov. non-R&D Contracting (Pre, $1Bn)) 0.314** -0.059** 0.307** -0.034** 0.296**
(0.031) (0.011) (0.044) (0.002) (0.032)

ln(Number of Patents) -0.042** -0.003 -0.037* 0.021** -0.027**
(0.007) (0.004) (0.015) (0.004) (0.007)

Share of Small Assignees 0.396** -0.245** 0.364** -0.253** 0.308**
(0.052) (0.011) (0.054) (0.005) (0.050)

Avg of DV 5.016 2.059 0.109 2.059 0.109 2.059
SD of Science 0.128 0.128 0.128
Cragg-Donald F-Stat 700.301 360.217
Year Fixed Effects Yes Yes Yes Yes

R2 0.227 0.119
N 1,373 1,928 1,928 1,928 1,928 1,928

Notes: Analysis for column 1 is at the Web of Science Field-paper publication year level. Analyses for Column 2-6 are at the 4-digit
IPC-patent publication year level. Sample period is 1992 and 2000 inclusively for all columns. Avg Cites to Science range from zero
to one and averages the Cites Science Dummy at the unit of analysis. Share of Reassigned Patents ranges from zero to hundred and
averages the Reassignment dummy at the unit of analysis, which at the patent level is equal to 100 if a patent is reassigned and zero
otherwise. ∆log(Gov. R&D Contracting) is calculated as the difference logged values of R&D contracting obligations between pre
(1986-88) and post (1990-92) periods. Number of Papers(1000s) refer to the number of papers (in thousands) relevant to a 4-digit
IPC. Number of Papers(Predicted, 1000s) is the predicted value from equation A4. Gov. R&D Contracting (Pre) is the average
government contract R&D funding for the pre-period (1986-1988). Gov. non-R&D Contracting (Pre) is the average government
non-R&D contract value for the pre-period (1986-1988). Column 1 includes paper publication year fixed effects, while columns 2-6
include patent grant year fixed effects. Standard errors are clustered at the year level.

Table 9 columns 3 and 4 present the results using the predicted paper instrument; columns 5 and

6 present results using the funding differences instrument. Consistent with our prediction of an upward

bias, the OLS coefficient (column 2) is larger in magnitude than the second stage IV coefficients in

columns 4 and 6. F-statistics for all first stage regressions are above 104.7, which recent work argues to

be the appropriate critical F-value for valid inference using a second stage critical t-statistic of 1.96 (Lee

et al., 2020).41 Patent classes that cite science a standard deviation more due to federal research funding

shocks experience a 5.6% increase in patent trade probability relative to the sample mean.

41Results are also robust to bootstrapped standard errors with 1,000 samples in appendix table B4
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6 Discussion and Conclusion

This paper aims at advancing our understanding of how science affects the rate and direction of innovation.

The use of science in invention can enhance the commercialization of inventions if it facilitates trade

in inventions to those that are best able to commercialize them. Such trades support a division of

labor between upstream inventors and downstream commercializers. Science generalizes phenomena into

universal categories and unravels the mechanisms that underpin them. This may directly lead to higher

quality inventions. Furthermore, conceptualizing inventions in scientific terms makes them easier to

codify, reducing search costs for potential buyers, and enables buyers to evaluate and integrate inventions.

This should reduce transaction costs that are thought to afflict trade in technology, as well as enhance

the potential gains from trade.

Our main contribution is to establish that science-based inventions are more likely to be traded.

Patents that reference a scientific article are 16-23% more likely to be traded than patents that do not

reference science. Trade also depends on the demand for inventions. We derive and test three predictions

of the reliance on science increasing gains from trade and reducing transaction costs. First, we find that

patents invented by smaller firms are more likely to be traded, and that science magnifies this contrast

with larger firms. Second, concentrated industries with an unequal distribution of potential patent buyers

exhibit more patent trade, especially when the focal patent uses science. Third, the science citation effect

on reassignment is up to three times larger for novel patents compared to not-novel patents. We also

find that reliance upon science is associated with greater share of small inventors, and with entry of new

inventors. Conditional upon citing science, we find that the positive relationship with MFT is especially

strong for cited science that is more recent, suggesting that science also increases gains from trade, in

addition to reducing transfer costs. Finally, we exploit a variation in the amount of scientific funding

available from the federal government in the immediate aftermath of the Cold War to confirm the causal

relationship between science and the market for technology.

Our findings imply that enhancing scientific understanding can increase social welfare over and above

its role in generating valuable inventions: by encouraging the expansion of markets for technology, which

allocates ownership rights to the most efficient user of existing inventions, and indirectly, by supporting

a division of innovative labor.
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Appendix A Data

Figure A1: Markets for Technology and Production and Use of Science

Notes: This graph plots time trends of patent trade, patent citations to science, and U.S. scientific publication output over
our sample period. Patent Trade Rate for a given year is defined as the ratio between the number of patents reassigned
over the number of patents in force in that year. Patent Science Citation Rate for a given year is defined as the number of
citations to scientific articles in Microsoft Academic Graph (MAG) divided by the number of patents published in that year.
Both rates are normalized by their levels in 1980 in this graph. U.S. Scientific Publications refer to the total number of
scientific publications with a U.S. author in a given year from Clarivate Web of Science’s Science Citation Index-Expanded
(SCI-EXPANDED) and Conference Proceedings Citation Index-Science (CPCSI-S).

A.1 Sample construction

Our patent data is from the 2016 publication of PatStat and encompasses around 5.2 million utility patents
granted by the USPTO from 1980 to 2016. We collect information on patent reassignment (transaction
date, identity of buyers and sellers) by linking them to the USPTO Patent Assignment Database (PAD)
(Graham et al., 2018), which records details on the transfer of ownership between patent assignees. To
account for sample truncation, we limit our sample to patents granted on or before 2011 (for which
we observe reassignments until 2015).42 We construct measures of invention novelty based on textual
similarity and on technological combinations, following Fleming (2001).

A.1.1 Patent Citations to Science

We employ a publicly available dataset from Marx and Fuegi (2020), which matches NPL citations to
scientific articles available in Microsoft Academic Graph (MAG). The dataset assigns confidence scores
for matches between a patent’s NPL citation and a MAG article (1 being the lowest and 10 being the
highest). We take the “PCS (Patent Citations to Science)” file and first exclude matches with under a
90% confidence score. We further exclude cited articles in the social sciences or humanities, leaving us

42About 58% of patents that are reassigned are done so within five years of being granted.
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with OECD subject fields in “Natural Sciences”, “Engineering and Technology”, “Medical and Health
Sciences”, “Agricultural Sciences”.

Textual similarity to science — We take the pairwise textual similarity measure from Arora
et al. (2018), which calculates cosine similarities on the text of U.S. patents and scientific articles from
the Science Citation Index - Expanded collection of Clarivate Web of Science. For each paper published
between 1990 and 2015, we sort the patents in descending order of their similarity scores to the focal
paper. We then rank the top 100 patents in terms of similarity scores to each publication (“similar
patents”). The Textual Similarity to Science variable is equal to the natural log of one plus the number
of publications for which a patent is classified as a “similar patent”. In unreported robustness checks, we
calculate two additional metrics. First, we normalize the the similarity scores by the maximum similarity
score pair for a publication, and take the average of this score for each patent. Second, we take the
average of the similarity rank each patent receives with respect to each publication. The direction and
statistical significance of the column 6 result in table 3 are not sensitive to these alternative calculations
of patent textual similarity to science.

Journal Impact Factor — Journal impact factor for a journal in year t is calculated as the number
of forward citations in years t − 1 and t − 2 received by the number of papers published in years t − 1
and t− 2 by the focal journal. The average journal impact factor for patent i averages this value for all
articles cited by a patent.43

Citation Lag — We measure how recent the science being cited is in relation to a patent by
measuring the average year difference between the grant year of the patent and the publication year of
the paper. For patent i citing j ∈ Ji articles,

Avg(Lag to Cited Sciencei) =

∑
j∈Ji Grant Y eari − Publication Y earj

|Ji|

The lower this value, the more recent (“younger”) the science being used in relation to the patent.
Number of Fields — we calculate how specialized a patent’s scientific citations are by counting

the number of unique WoS Fields of cited scientific papers per patent and dividing it by the number of
cited papers (the measure ranges between 0 and 1). For patent i citing J articles published in K fields,

Normalized F ield Countsi =
|Ki|
|Ji|

The lower (higher) this value, the more specialized (interdisciplinary) the patent is in terms of its scientific
citations.

Scientific Combination Familiarity — we calculate the novelty of the combination of Web of
Science scientific fields cited by counting how many times the same scientific combinations have been
cited by the paper cited by a focal paper since 1790.

Combination Familiarity for WOS Fields (Decayed)i =∑
patents k before patent i

1{k cites identical combination of WOS Fields as i}

× exp(grant date of patent k − grant date of patent i

time constant of knowledge loss
)

Where the time constant of knowledge loss is set to 5 years such that a previous Web of Science
combination from five years ago is weighted by exp(−1

5) = 37%. This is an analog of the Technological
Combination Familiarity measure by Fleming (2001), which is calculated for patent classes. There are
175 Web of Science (WoS) Fields assigned to 1,740,815 articles cited by patents in our sample. Intuitively,

43We source journal impact factors from Marx and Fuegi (2020)
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the more often the same combination appears (the higher the Familiarity score), the less novel are the
patent’s scientific combinations.

A.1.2 Identifying market transactions for patents

We download the 2016 version of the USPTO Patent Assignment Dataset and identify patent reassign-
ments that may classify MFT transactions. Our framework follows methods pioneered by Serrano (2010)
and refined by Ma et al. (2017) and Figueroa and Serrano (2019).

We define MFT transactions as transfers of technology between two independent entities. This
excludes ownership transfers within firms and purchases of capabilities rather than technology (e.g. M&As
that transfer lab personnel and capital equipment along with patents). The USPTO records each received
patent transfer in a “Reel Frame” (RF) ID, and has classified the conveyance types of these transfers into
assignment of assignor’s interest, name changes, government interest agreements, security agreements,
and release by secured parties. We exclude all other conveyance types than assignments of assignors’
interest. The USPTO also identifies employer assignment as the first recorded transaction for a patent
where the patent is transferred alone with an execution date prior to the patent application disposal date
(Graham et al., 2018, p.27). These RF IDs are also removed.

We add several additional checks. First, we exclude assignments whose date is before the grant date
of a patent. While it is possible that a transaction has occurred before the patent was granted, it is also
possible that the patent’s initial assignment was mistaken with a reassignment to a buyer. Without a
way to positively identify pre-grant patent application purchases, we decide it is safer to exclude these
cases to reduce false positives.

Second, we exclude cases where the assignee (“buyer”) names in the PAD records are similar to
assignee names in the USPTO PATSVIEW. The assignee names in PATSVIEW record the initial assignee
name(s) on the granted patent document. Therefore, if the assignee name in the PAD records are similar
to the original owner’s (assignee on patent document), we can rule out an MFT transfer between two
independent entities.

Third, we exclude cases where the assignor (“seller”) of an assignment is similar to the inventor
of the patent from USPTO PATSVIEW. These cases are likely to be corporate employees transferring
their patent rights to their firms per terms in their employment contract (it has been common practice
among large corporations such as Du Pont, IBM, and Google to automatically transfer patent rights from
employees to employers by such contracts).

Fourth, we download all completed acquisitions recorded in SDC Platinum between 1980 and 2015
and match the “Target Name“ and “Acquiror Name“ in SDC to patent assignor and assignee names
in PAD. If the buyer-seller pair of companies in SDC correspond to the buyer-seller pairs in PAD, we
exclude them.

Fifth, we also measure the string distance between assignor-assignee pairs so that intra-corporate
reassignments (from, say, a company’s headquarters to its licensing subsidiary) are dropped. For the
second to fifth steps, we judge that names are similar based on Jaro-Winkler, Jaccard, and a normal-
ized Levehnstein edit distance (python package available from https://github.com/seatgeek/fuzzywuzzy)
after standardizing common suffixes such as “CORP”, “LTD” and prefixes such as “LEGAL REPRE-
SENTATIVE”. Specifically, we take one minus the maximum value of the distance measures (which range
between zero and one) and classify those pairs with larger than an appropriate threshold as similar to
each other. We conduct extensive human checks around these thresholds to reduce classification error.

Sixth, we exclude RF IDs with more than 25 patents being transferred, because these are likely to
be part of M&A deals between large firms.
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A.1.3 Technological sector classifications, By 2 digit IPCs

Table A1: Technological Sector Classifications, by 2
Digit IPCs)

Technological Sector

2digit IPCs Life Sciences Chemicals ICT others Total

A0 0 21,088 0 33,988 55,076
A2 0 19,613 0 8,672 28,285
A4 0 0 0 80,474 80,474
A6 260,352 13,368 0 55,149 328,869
B0 0 97,147 0 15,620 112,767
B2 0 0 0 156,854 156,854
B3 0 19,394 0 5,506 24,900
B4 0 0 0 72,225 72,225
B6 0 0 0 260,836 260,836
B8 0 0 0 1,486 1,486
C0 15,111 229,919 0 59,285 304,315
C1 53,768 29,920 0 43 83,731
C2 0 28,317 0 16,968 45,285
C3 0 5,038 0 0 5,038
C4 0 625 0 0 625
D0 0 1,971 0 27,061 29,032
D2 0 0 0 9,512 9,512
E0 0 0 0 68,229 68,229
E2 0 0 0 29,611 29,611
F0 0 0 0 104,165 104,165
F1 0 0 0 110,113 110,113
F2 0 4,985 0 66,463 71,448
F4 0 0 0 15,259 15,259
G0 26,549 0 489,134 273,734 789,417
G1 0 0 51,524 8,890 60,414
G2 0 0 0 9,437 9,437
H0 1,511 2,592 480,584 214,912 699,599

Total 357,291 473,977 1,021,242 1,704,492 3,557,002

Notes: This table tabulates the four technological sector classifications (Life
Sciences, Chemicals, ICT, and other) that we use in our main sample of 3.5
million USPTO patents published between 1980 and 2011.
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A.2 Instrumental variable construction

A.2.1 Data collection

We collect federal procurement contracts for research and development services by manually downloading
government contracts by year and agency from https://www.usaspending.gov and https://beta.SAM.

gov. The former is mandated by the Federal Funding Accountability and Transparency Act of 2006 and
is maintained by the Office of Management and Budget and includes all procurement activities of the U.S.
federal government since 2000. The latter is run by the General Services Administration and contains
procurement data as early as the 1970s. We keep data from 1980 onwards for our analysis.

Table A2: Government Funding of Procurement Contracts for R&D Servicese

Contract Value

Rank PSC 1986-88 1990-1992 Description

1 AN41 $ 249,686 $ 99,000,000 R&D- Medical: Health Services (Basic Research)
2 AH96 $ 143,921 $ 25,000,000 R&D- Environmental Protection: Other (Management/Support)
3 AE21 $ 253,278 $ 27,800,000 R&D- Economic Growth: Product/Service Improvement (Basic Research)
4 AN12 $ 4,530,456 $ 315,000,000 R&D- Medical: Biomedical (Applied Research/Exploratory Development)
5 AN11 $ 26,600,000 $ 1,420,000,000 R&D- Medical: Biomedical (Basic Research)
6 AN46 $ 47,000,000 $ 1,970,000,000 R&D- Medical: Health Services (Management/Support)
7 AG94 $ 851,749 $ 32,600,000 R&D- Energy: Other (Engineering Development)
8 AN15 $ 313,241 $ 9,018,358 R&D- Medical: Biomedical (Operational Systems Development)
9 AE33 $ 2,653,725 $ 63,200,000 R&D- Economic Growth: Manufacturing Technology

(Advanced Development)
10 AE35 $ 17,300,000 $ 386,000,000 R&D- Economic Growth: Manufacturing Technology

(Operational Systems Development)

. . . . . . . . . . . . . . .

212 AR12 $ 11,200,000 $ 553,805 R&D- Space: Aeronautics/Space Technology
(Applied Research/Exploratory Development)

213 AS21 $ 1,865,031 $ 65,330 R&D- Modal Transportation: Surface Motor Vehicles (Basic Research)
214 AH32 $ 2,703,422 $ 69,106 R&D- Environmental Protection: Water Pollution

(Applied Research/Exploratory Development)
215 AR22 $ 54,400,000 $ 1,283,886 R&D- Space: Science/Applications

(Applied Research/Exploratory Development)
216 AG73 $ 3,824,674 $ 54,971 R&D- Energy: Solar/Photovoltaic (Advanced Development)
217 AG55 $ 17,900,000 $ 144,088 R&D- Energy: Nuclear (Operational Systems Development)
218 AN40 $ 10,600,000 $ 62,824 R&D- Health Services
219 AD54 $ 50,600,000 $ 189,912 R&D- Defense Other: Fuels/Lubricants (Engineering Development)
220 AR94 $ 881,000,000 $ 775,323 R&D- Space: Other (Engineering Development)
221 AZ10 $ 368,000,000 $ 39,265 R&D- Other

Notes: The observations are sorted in descending order by the logged difference between the pre (1986-88) and post (1990-92)
period.

Our procurement data covers all contracts signed by the Department of Defense, Energy, Health and
Human Services, and Veterans Affairs between 1980 and 2020. As of FY2019, these agencies accounted
for more than 72% of all procurement contracts and constitute four of the five largest spenders on
“contractual services and supplies” (the omitted agency is the Office of Personnel Management, which
primarily deals with health benefits and life insurance funds and unlikely to contract out R&D services).
We collect the signing date, action obligation44 in current dollars, vendor names, contracting agency and
the relevant 4-digit Product and Service Codes (PSC) for these four agencies between 1980 and 2019.
We match the vendor names to the firm names found in the DISCERN database of American public,
R&D performing firms between 1980 and 2015, using a combination of automated string distance metrics

44Action obligations are “intentions” backed by a contractual agreement. The government does not release actual dollar
amounts spent on contracts. After initial contract signing, the actual expenditure can increase, decrease, or stay the same.
Agencies enter a “contract action” into the database whenever they know that what was initially obligated has changed.
These corrections may sometimes (5%) lead to negative obligations.
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and manual cleaning. We limit procurement contracts to services related to R&D only (1st digit PSC
corresponding to “A”).

A.2.2 Crosswalk definition

We crosswalk the values of the contracts from PSC codes to patent classes (IPCs) and publication fields
(WoS fields) using the following methods:

Crosswalk from PSC to IPC — We calculate the level of federal scientific spending relevant to
an IPC by multiplying a dyadic weight based on patent class-level patenting distributions of vendor firms
winning contracts in a 4-digit PSC. For firm i patenting in IPC k and contracting in product code j, the
4-digit PSC-to-4-digit IPC weight is defined as:

weightjk :=
∑
i

Contract V alueij ×
patentsik
patentsi

(A1)

for all DISCERN patents and contracts published and signed between 1980 and 1992. The post Cold
War funding shock relevant for each 4-digit IPC (used in the first stage regression of table 9 column 5
and appendix table A3) is calculated as the logged difference between the average contract value for a
“pre” period from 1986 to 1988 and a “post” period from 1990 to 1992.

∆ln(Gov. R&D Contractingk) := ln

∑j weightjk ×
∑t=1992
t=1990 Contract V aluejt

3∑
j weightjk ×

∑t=1988
t=1986 Contract V aluejt

3

 (A2)

Crosswalk from PSC to WoS Field — We calculate the level of federal scientific funding rele-
vant to a Web of Science field by multiplying a dyadic weight based on scientific field-level publication
distributions of contracting vendor firms. For firm i publishing in WoS field l and contracting in product
code j, the 4-digit PSC-to-WoS field weight is defined as:

weightjl :=
∑
i

Contract V alueij ×
papersil
papersi

(A3)

for all DISCERN papers and contracts authored and signed between 1980 and 1992.
Number of Predicted Papers — Using the above crosswalk, we run an OLS regression to predict

the number of papers as a function of the funding shocks around the end of the Cold War:

Number of Paperslt = β0 + β1∆ln(Government R&D Contracting)l

+ β2ln(Government R&D Contracting (Pre))l + ξt + νlt
(A4)

where ξt are paper publication year fixed effects. The WoS field level funding shock in equation A4 is
defined as:

∆ln(Gov. R&D Contractingl) := ln

∑j weightjl ×
∑t=1992
t=1990 Contract V aluejt

3∑
j weightjl ×

∑t=1988
t=1986 Contract V aluejt

3

 (A5)

Crosswalk from WoS Field to IPC — To construct the instrument for columns 3 and 4 of table
9, we crosswalk the number of predicted papers ( ̂Number of Paperslt) at the web of science-year level
to the patent class-year level by multiplying a dyadic weight based on the NPL citations from patents
the scientific literature. For patents in 4-digit IPC k citing papers in WoS field l, the number of scientific
papers relevant for each IPC is defined as:
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Number of Paperskt =
∑
l

weightkl ×Number of Paperslt (A6)

where the weight is defined as:

weightkl =
NPL Citationskl

Total NPL Citations Receivedk
(A7)

for all patents granted between 1980 and 1992.

A.2.3 Comparison to other sources of R&D expenditure data

We use the National Science Foundation’s “National Patterns of R&D” data series to compare the relative
magnitude of federal R&D funding to other sources and verify that the procurement data we use for the
construction of the instrument. Figure A2 shows that the federal government was responsible for funding
around 43% of all R&D expenses between 1986 and 1992. Moreover, the R&D procurement data we
are using for the instrumental variable covers around 76% of total federal R&D spending performed by
industry.

Figure A2: U.S. R&D Funding, by Source
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Notes: The bar graph plots the aggregated annual research and development expenditure by source of funds from the NSF
National Patterns of R&D Resources (2014-15), tables 8 and 9 (the “Other” category aggregates non-federal government,
higher education, and other non-profits). The line “Federally Sourced, Performed by Business” is a subset of the federal
spending on R&D that is performed by the business sector (the others performing sectors are federal intramural, FFRDC,
non-federal government, higher education, and other non profits). The line “Federal R&D Procurement” plots the Federal
R&D procurement dollars used in the construction of the instrumental variable in section 5.4. Figures are adjusted to
2012 dollars using GDP deflators from Louis Johnston and Samuel H. Williamson, “What Was the U.S. GDP Then?”
MeasuringWorth, 2020.

There are three likely sources of this discrepancy. First, we collect data for the four largest spenders
on R&D, while the NSF data covers all federal agencies. Second, reporting behaviors between the
procurement data and the survey data tend to differ (Pece, 2016). That is, even for the same agency and
subcategory of spending, there are significant gaps in the dollar values reported between the procurement
data and the NSF survey data. In FY2016, for instance, the Department of Defense reported $24.6 billion
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Figure A3: Funding Shocks for R&D vs non-R&D Procurements
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Notes: This plots the difference in federal funding before (1986-88) and after (1990-92) the fall of the Berlin Wall at the
4 digit IPC for R&D funding (y-axis) against non-R&D funding (x-axis) (r=0.257).

on procurement contract obligations for R&D services. In addition, the agency reported approximately
$6 billion in grants (for all types of grants, including but not limited to R&D grants). Therefore, we
expect to see a figure of under $31 billion for the DoD in the Federal Funds for R&D Survey data for
FY2016. However, the FFS reports $42 billion, which results in a difference of $11 billion. It is possible
that some data was omitted because the contracted amounts were below the reporting thresholds (ranging
between $2,000 and $10,000 depending on item specific requirements), or due to national security concerns.
Pece (2016) also points out that discrepancies between accounting systems maintained by the respective
agencies make collection of consistent data difficult.

Third, the NSF survey data includes grants, which we have not collected. The NSF “National
Patterns” report relies on the Survey of Federal Funds for Research and Development (FFS) and the
Census Bureau’s Business R&D and Innovation Survey (BRDIS). The questionnaires in these surveys
collect data on not only contracts but also grants.45

We address the concern that this omission may systematically undercount certain scientific disci-
plines. For instance, the life sciences relies heavily on grants from the National Institutes of Health (NIH).
We therefore compare the R&D procurement spending for the life sciences against the R&D outlays for
the Department of Health and Human Services (under which the NIH is classified). The NSF data indi-
cates a 35% increase in real dollar terms (from $9.9 to $13.5 billion 2012 dollars). Our data on the HHS
also shows a 5.7 times increase for the same period, while R&D contracts for medical (2 digit PSC code:
“AN”) purposes increase 5.3 times. Therefore, the direction of the change is same, if the magnitudes are
different.
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A.3 IVE robustness check

We calculate a new instrument that calculates funding differences after controlling for differences in
MFT demand conditions. This instrument predicts funding shocks net of controls for patenting quantity,
quality, and propensity to trade from an OLS specification. We estimate the following OLS specification
for 4-digit IPC k and = year t for years 1986 through 1992:

Government R&D Contractingkt = β0 + β1Post1989t + β2Post1989t × IPC Dummyi

+ IPC Dummyk + Y ear Dummyt +Z′
kt + εkt

(A8)

where controls Z′
it consist of number of patents, forward patent citations, and share of patents

traded. Government R&D Contractingkt is the amount of government R&D funding relevant to each
4-digit IPC-year.46 For each 4-digit IPC, the logged difference in predicted government funding due to

the end of the Cold War net of the controls is ̂∆log(Government R&D Contracting) := log(β̂0 + β̂1 +
β̂2IPC Dummyi + IPC Dummyi) − log(β̂0 + IPC Dummyi). This is the instrument used in columns
3 and 4 of table A3.

Table A3: Post Cold War Federal R&D Shifts and MFT
(Predicted Funding Shocks)

(1) (2) (3)

OLS 1st Stage IV 2nd Stage IV

Dependent Variable:
ln(Share of
Reassigned
Patents)

ln(Avg
Cites to
Science)

ln(Share of
Reassigned
Patents)

ln(Avg Cites to Science) 1.040** 0.650**
(0.056) (0.085)

∆ ln(Gov. R&D Contracting) (Predicted) 0.306**
(0.005)

ln(Gov. R&D Contracting (Pre, $1Bn)) -0.476** 0.122** -0.481**
(0.086) (0.016) (0.081)

ln(Gov. non-R&D Contracting (Pre, $1Bn)) 0.314** 0.008* 0.295**
(0.031) (0.004) (0.032)

ln(Number of Patents) -0.042** -0.003 -0.027**
(0.007) (0.006) (0.006)

Share of Small Assignees 0.396** -0.276** 0.305**
(0.052) (0.004) (0.054)

Avg of DV 2.059 0.109 2.059
SD of Science 0.128 0.128
Cragg-Donald F-Stat 321.527
Year Fixed Effects Yes Yes
R2 0.119
N 1,928 1,928 1,928

Notes: Analysis is at the 4-digit IPC-patent publication year level. Sample period is
1992 and 2000 inclusively for all columns. ∆log(Gov. R&D Contracting)(Predicted)
is calculated as the logged difference in predicted values from an OLS specification in
equation A8. Other variable definitions are identical to table 9. All specifications include
patent publication year fixed effects. Standard errors are clustered at the year level.

A potential threat to the validity of table 9 in section 5.4 is that our results are biased by secular
patterns in MFT preceding our sample period between 1992 and 2000. For instance, it is possible

45The 2001 questionnaire for the FFS states that “A performer [of R&D] is either an intramural group or organization
carrying out an operational function or an extramural organization or person receiving support or providing services under
a contract or grant.” (brackets and emphasis added by authors)

46The funding data is aggregated at the PSC-year level and crosswalked to the 4-digit IPC year level. The weights are
based on the relevance of each 4-digit IPC to a PSC using patenting data of vendor names matched to the DISCERN
database.
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Figure A4: Share of Patents Traded vs Shock
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Notes: This plots the coefficients from regressing share of patents traded within 5 years of grant at the 4 digit IPC-year
level against patent publication years, splitting the sample by whether the focal IPC was negatively (dark circle marker)
or positively (light diamond marker) shocked by the end of the Cold War. The base group is 1982.

that areas where federal R&D spending increased were also areas where patent market regulations were
selectively relaxed or random scientific discoveries were concentrated in. If so, then we should expect
there to be a considerable difference in the level of MFT activity for IPCs whose federal R&D spending
increased and those whose spending decreased. We regress at the 4-digit IPC-year level the share of traded
patents against year dummies after splitting the sample where average Federal R&D spending increased
and those where spending decreased. Figure A4 plots the coefficients of these OLS specifications (where
1982 is the base year) and finds that there is no statistically significant difference between the groups
positively and negatively affected by federal spending shocks.

A.3.1 R&D contracting and science

We find in column 1 of table 9 that a standard deviation larger government contract R&D shock around
the end of the Cold War leads to a 7% increase in papers in the relevant Web of Science field.

Given that corporate share in total scientific publications is generally low compared to academia,47

the existence of the 7% effect may be suspect if one assumes that government contract R&D procurement
is principally carried out by the corporate sector. Nevertheless, we find that between 1986 and 1992
(when the funding shocks are calculated), U.S. public firms account for only around 22% ($6.7 Bn) of all
contract R&D (which averages $32 Bn) in our procurement data. Moreover, around a third (114/357)
of R&D contracting firms never publish in science, while only around 40% operate a corporate lab for
1988 and 1991.48 This suggests that a sizable share of the contract R&D work is sub-contracted to public

47For example, the NSF’s 2018 Science and Engineering Indicators produces well over 70% of all peer-
reviewed scientific papers between 2003 and 2016 (https://www.nsf.gov/statistics/2018/nsb20181/report/sections/
academic-research-and-development/outputs-of-s-e-research-publications)

48We link our procurement data to a comprehensive directory of all corporate industrial laboratories in the United States
from Png (2019). The dataset is available at https://scholarbank.nus.edu.sg/handle/10635/150104 and contains the
number of professionals, doctorates, and technicians reported by American firms for 1981, 1983, 1985, 1988, 1991, 1994,
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entities that may in turn publish follow-on research.
This conjecture is consistent with prior research that argues that American firms started to “exter-

nalize” their R&D operations “through such mechanisms as consortia, collaboration with US universities
and federal laboratories” since the beginning of the 1980s (Mowery, 1998, p.646). On the other hand,
universities began to rely more heavily on industry support: between 1960 and 1995, industry contribu-
tion to university research tripled to 7%, while more than 1050 research institutes “seeking to support
research on issues of direct interest to industry” were being run by 1992 (Mowery, 1998, p.648).49

1997. The dataset also links lab names to Compustat GVKEYs, which allows us to link the data to the procurement data.
4957% of these were established during the 1980s.
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Figure B1: Reliance on Science and MFT, by Degrees of Connection to Citation Frontier

Cite Science Dummy
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Notes: This figure plots the coefficient estimates for the Cite Science Dummies in Table B1, in increasing order of distance
from the citation frontier.
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Table B2: Reliance on Science and MFT, Forward
Patent Citation Controls)

DV: Reassignment=1

(1) (2) (3)
Continuous Quintiles Deciles

Cite Science Dummy 0.780** 0.825** 0.802**
(0.039) (0.038) (0.038)

5-year Forward Patent Cites 0.104**
(0.002)

Triadic Patent Dummy 0.810** 0.820** 0.809**
(0.029) (0.029) (0.029)

Number of Claims 0.069** 0.070** 0.069**
(0.001) (0.001) (0.001)

Length of First Claim -0.000** -0.000** -0.000**
(0.000) (0.000) (0.000)

Forward Patent Citations (1st Quintile) 0.000
(.)

Forward Patent Citations (2nd Quintile) 0.302**
(0.035)

Forward Patent Citations (3rd Quintile) 0.673**
(0.036)

Forward Patent Citations (4th Quintile) 1.293**
(0.037)

Forward Patent Citations (5th Quintile) 2.593**
(0.040)

Forward Patent Citations (1st Decile) 0.000
(.)

Forward Patent Citations (2nd Decile) -0.098
(0.052)

Forward Patent Citations (3rd Decile) 0.175**
(0.046)

Forward Patent Citations (4th Decile) 0.385**
(0.046)

Forward Patent Citations (5th Decile) 0.546**
(0.047)

Forward Patent Citations (6th Decile) 0.757**
(0.048)

Forward Patent Citations (7th Decile) 1.131**
(0.049)

Forward Patent Citations (8th Decile) 1.414**
(0.050)

Forward Patent Citations (9th Decile) 1.900**
(0.051)

Forward Patent Citations (10th Decile) 3.262**
(0.055)

Avg of DV 6.265 6.265 6.265
4-digit IPC Fixed Effects Yes Yes Yes
Year Fixed Effects Yes Yes Yes
R2 0.013 0.013 0.013
N 3,882,632 3,882,632 3,882,632

Notes: Unit of analysis is at the patent level. “5-year Forward Patent Cites” counts
the number of forward patent citations a focal patent receives. Column 2 and 3
respectively include dummies for quintiles and deciles of “5-year Forward Patent
Cites” by patent grant year and 4-digit IPC. Other variable definitions are identical
to those in table 3
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Table B3: Science and MFT, by characteristic of cited science (2nd degree
connected)

DV: Reassignment = 1

(1) (2) (3) (4)
Recent Specialized Novel All

Avg(Lag to Cited Science (D=2)) -0.004 -0.004
(0.004) (0.004)

1-Normalized Field Counts (D=2) 0.292* 0.403**
(0.140) (0.144)

log(Avg(MAG Combination Familiarity (D=2)) + 1) -0.020 -0.024*
(0.011) (0.011)

Triadic Patent Dummy 1.932** 1.927** 1.925** 1.923**
(0.068) (0.068) (0.068) (0.068)

Number of Claims 0.063** 0.062** 0.062** 0.062**
(0.002) (0.002) (0.002) (0.002)

Length of First Claim -0.000* -0.000* -0.000* -0.000*
(0.000) (0.000) (0.000) (0.000)

Avg of DV 7.466 7.449 7.449 7.449
IPC Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
R2 0.015 0.015 0.015 0.015
N 685,836 685,836 679,822 679,822

Notes:Sample is limited to patents that cite at least one scientific article in MAG. Lag to Cited Science
(D=2) is defined as the difference in the grant year of a patent and the publication year of a scientific
paper cited by a scientific paper in its front page NPL citation list (“D=2” cited papers). Avg(Lag to
Cited Science) averages this value for each sciece-citing patent. MAG Combination Familiarity (D=2)
calculates the number of times the same WOS Field combination has been cited by a paper since
1790 with an exponential time decay rate of 18% (Fleming, 2001). Avg(MAG Combination Familiarity
(D=2)) averages this value for each patent that cites science. Normalized Field Counts (D=2) equals
the number of unique WOS Fields found in scientific papers cited by a scientific paper in the focal
patent’s front page NPL citation list, divided by the number of these “D=2” cited papers.
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Table B4: Post Cold War Federal R&D Shifts and MFT (Bootstrapped Standard Errors)

(1) (2) (3) (4) (5) (6) (7)

OLS 1st Stage IV 2nd Stage IV 1st Stage IV 2nd Stage IV 1st Stage IV 2nd Stage IV

Dependent Variable:
ln(Share of
Reassigned
Patents)

ln(Avg
Cites to
Science)

ln(Share of
Reassigned
Patents)

ln(Avg
Cites to
Science)

ln(Share of
Reassigned

Patents

ln(Avg
Cites to
Science)

ln(Share of
Reassigned

Patents

ln(Avg Cites to Science) 1.040** 0.905** 0.666** 0.650**
(0.051) (0.093) (0.201) (0.197)

Number of Papers (Predicted, 1000s) 0.075**
(0.003)

∆ ln(Gov. R&D Contracting) 0.189**
(0.009)

∆ ln(Gov. R&D Contracting) (Predicted) 0.316**
(0.016)

ln(Gov. R&D Contracting (Pre, $1Bn)) -0.476** -0.005 -0.478** 0.125** -0.481** 0.094** -0.481**
(0.078) (0.029) (0.091) (0.030) (0.092) (0.029) (0.088)

ln(Gov. non-R&D Contracting (Pre, $1Bn)) 0.314** -0.062** 0.307** -0.037** 0.296** 0.034** 0.295**
(0.028) (0.012) (0.043) (0.012) (0.043) (0.012) (0.042)

ln(Number of Patents) -0.042** -0.002 -0.037* 0.022** -0.027 -0.010* -0.027
(0.007) (0.004) (0.016) (0.004) (0.017) (0.004) (0.016)

Share of Small Assignees 0.396** -0.244** 0.364** -0.242** 0.308** -0.263** 0.305**
(0.047) (0.011) (0.053) (0.012) (0.068) (0.012) (0.064)

Avg of DV 2.059 0.109 2.059 0.109 2.059 0.109 2.059
SD of Science 0.128 0.128 0.128 0.128
Cragg-Donald F-Stat 700.301 358.905 320.356
Year Fixed Effects Yes Yes Yes Yes
R2 0.119
N 1,928 1,928 1,928 1,928 1,928 1,928 1,928

Notes: This table replicates the results in table 9 and A3 with bootstrapped standard errors. Analysis is at the 4-digit IPC-patent publication year
level. All specifications include patent publication year fixed effects. Standard errors are from 1000 bootstrapped samples.
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